IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 大数据 -> Spark、Hive、Hbase比较 -> 正文阅读

[大数据]Spark、Hive、Hbase比较

1.spark

  • spark是一个数据分析、计算引擎,本身不负责存储;
  • 可以对接多种数据源,包括:结构化、半结构化、非结构化的数据;
  • 其分析处理数据的方式有多种发,包括:sql、Java、Scala、python、R等;其中spark-sql用来对结构化数据分析处理,它将数据的计算任务通过SQL的形式转换成了RDD的计算。

2.hive

数据仓库,主要负责数据存储和管理,看作MapReduce计算引擎+HDFS分布式文件系统,直观理解就是Hive的SQL通过很多层解析成了MR程序,然后存储是放在了HDFS上,并且只能用SQL这种方式来处理结构化数据,因此spark和hive是互不依赖的。

3.spark和hive的结合

实际应用两者结合,有三种方式:hive on spark、spark on hive、spark+spark hive catalog,常见的是第一种,是因为hive底层现在支持三种计算计算引擎:mr\tez\spark。

  • 第一种:使用hive的语法规范即hive sql,执行时编译解析成spark作业运行(当然此时底层的计算引擎是spark);

  • 第二种:因为spark本身只负责数据处理而不是存储,支撑多种数据源,当我们使用spark来处理分析存储在hive中的数据时(把hive看作一种数据源,常见的其他数据源包括:JDBC、文件等),这种模式就称为为 spark on hive。这个时候可以使用spark的各种语言的API,也可以使用hive的hql
  • 第三种:我感觉有点难,了解即可,只是现在好像发展挺快的,用的人挺多的

4.Hive VS Spark

  • Hive:数据存储和清洗,处理海量数据,比如一个月、一个季度、一年的数据量,依然可以处理,虽然很慢;
  • Spark SQL:数据清洗和流式计算,上述情况下 Spark SQL 不支持,无法处理,因为其基于内存,量级过大承受不住,并且性价比不如hive高;
  • 结合来说,hive的强项在于:1、大数据存储,2、通过sql方式进行MapReduce操作,降低大数据使用门槛。spark强项在于1、基于内存的MapReduce操作,速度快2、流式计算(对标产品flink,storm)。运用上大多两者集合,hive负责廉价的数据仓库存储,spark-sql负责告诉计算,并结合DataFrame进行复杂的数据挖掘(包括机器学习、图计算等复杂算法)。

5.Spark on hive VS Spark-sql

  • 在同时安装了Hive和spark时,我使用hive下的beeline执行HQL,执行引擎是MapReduce;使用spark下的spark-beeline执行HQL,执行引擎是spark;后者执行速度会更快;
  • Hive On Spark大体与Spark SQL结构类似,只是SQL引擎不同,但是计算引擎都是Spark

6.Hive VS Hbase

  • Hive中的表是纯逻辑表,就只是表的定义等,即表的元数据;其本身不存储数据,它完全依赖HDFS和MapReduce。将结构化的数据文件映射为为一张数据库表,并提供完整的SQL查询功能,并将SQL语句最终转换为MapReduce任务进行运行。
  • 而HBase表是Hadoop database的简称,是一种NoSql数据库,适合存放非结构化的数据,是物理表,适用于海量明细数据的随机实时查询
  • 在大数据架构中,Hive和HBase是协作关系,流程如下:
    1. 通过ETL工具将数据源抽取到HDFS存储;
    2. 通过Hive清洗、处理和计算原始数据;
    3. HIve清洗处理后的结果,如果是面向海量数据随机查询场景的可存入Hbase
    4. 数据应用从HBase查询数据;

参考引用说明:

(17 封私信 / 80 条消息) 请问spark和hive是什么关系? - 知乎 (zhihu.com)

(17 封私信 / 80 条消息) HBase 和 Hive 的差别是什么,各自适用在什么场景中? - 知乎 (zhihu.com)

  大数据 最新文章
实现Kafka至少消费一次
亚马逊云科技:还在苦于ETL?Zero ETL的时代
初探MapReduce
【SpringBoot框架篇】32.基于注解+redis实现
Elasticsearch:如何减少 Elasticsearch 集
Go redis操作
Redis面试题
专题五 Redis高并发场景
基于GBase8s和Calcite的多数据源查询
Redis——底层数据结构原理
上一篇文章      下一篇文章      查看所有文章
加:2021-12-16 17:44:46  更:2021-12-16 17:46:29 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/17 5:54:51-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码