IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 大数据 -> ELASTICSEARCH -> 正文阅读

[大数据]ELASTICSEARCH

ElasticSearch是一个基于Lucene的搜索服务器。它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口。Elasticsearch是用Java开发的,并作为Apache许可条款下的开放源码发布,是当前流行的企业级搜索引擎。

lucene作为全文检索引擎工具包.对于java语言的开发人员直接可以上手(api),其他语言也需要全文检索技术.apache(solr),和elastic(elaticsearch)入手开发了基于lucene搜索服务,对外提供的RESTfulweb接口(http协议的访问url地址);

elaticsearch结构

包括三大部分:

底层数据存储:维护索引文件(海量的索引文件),利用分布式数据切分存储,存储在本地实现分布式,也能直接对接hdfs

封装lucene扩展功能:发现集群节点功能,支持各种对所有资源管理功能

接口层:给用户提供访问的接口(http协议的REST风格),用户可以通过url访问地址,通过请求方式对索引进行增删改查的操作;

数据库ES
database数据库index索引
table表type类型
rows行数据document文档
column列数据field域
sql语法DSL
insertput请求
updatepost请求
deletedelete请求
selectget请求

?

elasticsearch在后台把每个索引划分成多个分片,每分分片可以在集群中的不同服务器间迁移

一个索引类型中,包含多个文档,比如说文档1,文档2。当我们索引一篇文档时,可以通过这样的一各顺序找到它:索引?类型?文档ID,通过这个组合我们就能索引到某个具体的文档。注意:ID不必是整数,实际上它是个字符串。

文档

elasticsearch是面向文档的,那么就意味着索引和搜索数据的最小单位是文档,elasticsearch中,文档有几个重要属性:自我包含,一篇文档同时包含字段和对应的值,也就是同时包含key:value!可以是层次型的,一个文档中包含自文档,复杂的逻辑实体就是这么来的!灵活的结构,文档不依赖预先定义的模式,我们知道关系型数据库中,要提前定义字段才能使用,在elasticsearch中,对于字段是非常灵活的,有时候,我们可以忽略该字段,或者动态的添加一个新的字段。尽管我们可以随意的新增或者忽略某个字段,但是,每个字段的类型非常重要,比如一个年龄字段类型,可以是字符串也可以是整形。因为elasticsearch会保存字段和类型之间的映射及其他的设置。

类型

类型是文档的逻辑容器,就像关系型数据库一样,表格是行的容器。类型中对于字段的定义称为映射,比如name映射为字符串类型。我们说文档是无模式的,它们不需要拥有映射中所定义的所有字段,比如新增一个字段,那么elasticsearch是怎么做的呢?elasticsearch会自动的将新字段加入映射,但是这个字段的不确定它是什么类型,elasticsearch就开始猜,如果这个值是18,那么elasticsearch会认为它是整形。但是elasticsearch也可能猜不对,所以最安全的方式就是提前定义好所需要的映射,这点跟关系型数据库殊途同归了,先定义好字段,然后再使用

索引

索引是映射类型的容器,elasticsearch中的索引是一个非常大的文档集合。索引存储了映射类型的字段和其他设置。然后它们被存储到了各个分片上了。

倒排索引

elasticsearch使用的是一种称为倒排索引的结构,采用Lucene倒排索作为底层。这种结构适用于快速的全文搜索,一个索引由文档中所有不重复的列表构成,对于每一个词,都有一个包含它的文档列表。例如,现在有两个文档,每个文档包含如下内容:

Study every day,good good up to forever #文档1包含的内容
To forever, study every day, good good up # 文档2包含的内容

为了创建倒排索引,我们首先要将每个文档拆分成独立的词(或称为词条或者tokens),然后创建一个包含所有不重复的词条的排序列表,然后列出每个词条出现在哪个文档:

termdoc_1doc_2
Study×
To×
every
forever
day
study×
good
to×
up

现在,我们试图搜索to forever,只需要查看包含每个词条的文档

termdoc_1doc_2
to×
forever
total21

两个文档都匹配,但是第一个文档比第二个匹配程度更高。如果没有别的条件,现在,这两个包含关键字的文档都将返回。

--学习狂神说

  大数据 最新文章
实现Kafka至少消费一次
亚马逊云科技:还在苦于ETL?Zero ETL的时代
初探MapReduce
【SpringBoot框架篇】32.基于注解+redis实现
Elasticsearch:如何减少 Elasticsearch 集
Go redis操作
Redis面试题
专题五 Redis高并发场景
基于GBase8s和Calcite的多数据源查询
Redis——底层数据结构原理
上一篇文章      下一篇文章      查看所有文章
加:2022-01-03 16:10:38  更:2022-01-03 16:10:55 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/24 14:11:24-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码