| |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
-> 大数据 -> 大数据平台的SQL查询引擎有哪些—SparkSQL -> 正文阅读 |
|
[大数据]大数据平台的SQL查询引擎有哪些—SparkSQL |
大数据技术训练舱,手把手从零教你大数据技术开发: 大数据技术训练舱:从零开始部署Hadoop3高可用集群(基于CentOS7) Spark架构作为大数据处理计算的大一统软件栈Spark,或将是大数据处理领域里面的Spring framework。我们从下图中可以看到Spark core之上具有了四种面向不同计算领域或方式的Spark模块,Spark streaming模块面向实时流计算,具体方式采用微批处理;MLlib模块面向Spark的机器学习库,尤其是Spark默认对Python的支持,成为Python开发者接入Hadoop生态平台的绝佳入口;GraphX面向图处理,有了GraphX,对于社交网络、知识库、超文本关联度分析、传染病传播预测等应用领域,都可以使用Spark来处理。 我们本次主要分析了解到是Spark SQL,一个将不同来源数据进行关系结构化再进行计算处理的模块。 DataFrame示例Spark SQL可以支持从很多种数据源的结构化抽象,Spark SQL从数据源中抽取数据集后抽象成一种具有schema结构的rdd对象:DataFrame,有点类似拿到了一个Hibernate的Session与实体对象的合体(类似,可能不太恰当),可以执行类似下面例子中DataFrame(df)的查询操作。? ?? 大家可以看到DataFrame实际上就是将数据源结构化为SQL表列。因为DataFreame也需要进行schema定义。类似下图: 数据源Spark SQL可以从哪些数据源建立DataFrame结构化模型呢?
架构如下图所示:
Catalyst优化器Spark SQL执行的SQL语句在Catalyst优化器中经历了逻辑计划、物理计划两个过程,逻辑计划过程主要依赖Antlr。首先SQL语句在unresolved logical plan阶段由antlr转换成抽象语法树,这时候会根据Catalog中(存储了所有的表信息、DataFrame信息)的元数据,对unresolved?logical plan进行表达式解析,确定表、列都存在后,才会形成真正的resolved?logical plan,最后交付Catalyst优化器进行优化逻辑计划(Optimized logical plan)。如下图所示: 转换成功的逻辑计划将进入物理计划阶段,Optimized logical plan会分解为多个物理计划(Physical Plans),最终进入代价模型(Cost Model),根据资源开销成本,去选择最佳的物理计划(Best Physical Plan),最终进入到集群中运行。如下图所示: Dataset在Dataframe之后Spark推出了一个新的数据抽象:DataSet,DataSet可以理解为DataFrame的扩展,对象类型更为显性,这种优势就是在开发起来具有更友好的API风格,更适合工程化管理。 例如:我们定义了一个叫Flight的Dataset实体类 我们可以将DataFrame转换成Flight class类型的Dataset,这时候的变量flights就是Dataset[Flight]强类型了,即具有类型安全检查,也具有Dataframe的查询优化特性。 Dataset在编译时就会检查类型是否符合规范。Dataset仅适合用于基于JVM的Scala、Java,通过case类或Javabeans指定类型。 当调用DataFrame的API时,返回的结果结构就是Row类型;当使用DatasetAPI时,就可以将将Row格式的每一行转换为指定的业务领域对象(case类或Java类) Spark集群架构我们可以将Hive、Impala、Presto理解为比较独立的数仓工具,在上一篇中Impala和Presto的对比,我们甚至可以看到它们俩具有独立的分布式架构。Hive则是Hadoop生态独立性很高SQL解析与执行工具,插接Mapreduce、Spark、Tez计算引擎,高度依赖HDFS存储系统。 反观Spark SQL,它并不独立,应是Spark平台上的一组模块,彻底与Spark糅合在一起,因此谈Spark SQL的分布式架构,其实就是在讲Spark架构。我们从下图可以看到Spark架构的特征,在集群计算资源调度方面与Spark无关,主要依赖Hadooop Yarn或者Mesos实现分布式集群计算资源的调度管理。 同理Spark SQL解析完成物理计划后就完成交由Spark集群进行并行任务处理,Spark集群中Driver提交作业、实现调度,Executor具体执行任务、返回结果。 Executor中通过多线程方式运行任务(Task),而且Executor通过堆内内存、堆外内存管理,实现高性能的内存计算,这点是Spark性能上优于Mapreduce将中间过程数据写入磁盘导致性能慢的关键原因之一。 您觉得文章写得不错就点赞、分享一下吧! 本文由公众号「守护石」出品,转载请注明来源和作者。? |
|
|
上一篇文章 下一篇文章 查看所有文章 |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 | -2025/1/17 4:08:05- |
|
网站联系: qq:121756557 email:121756557@qq.com IT数码 |