IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 大数据 -> 【狂神说】Redis笔记整理 -> 正文阅读

[大数据]【狂神说】Redis笔记整理

Redis

Nosql概述

什么是Nosql

Not Only Structured Query Language

关系型数据库:列+行,同一个表下数据的结构是一样的。

非关系型数据库:数据存储没有固定的格式,并且可以进行横向扩展。

NoSQL泛指非关系型数据库,随着web2.0互联网的诞生,传统的关系型数据库很难对付web2.0时代!尤其是超大规模的高并发的社区,暴露出来很多难以克服的问题,NoSQL在当今大数据环境下发展的十分迅速,Redis是发展最快的。

Nosql特点

  1. 方便扩展(数据之间没有关系,很好扩展!)
  2. 大数据量高性能(Redis一秒可以写8万次,读11万次,NoSQL的缓存记录级,是一种细粒度的缓存,性能会比较高!)
  3. 数据类型是多样型的!(不需要事先设计数据库,随取随用)
  4. 传统的 RDBMS 和 NoSQL
传统的 RDBMS(关系型数据库)
- 结构化组织
- SQL
- 数据和关系都存在单独的表中 row col
- 操作,数据定义语言
- 严格的一致性
- 基础的事务
- ...
Nosql
- 不仅仅是数据
- 没有固定的查询语言
- 键值对存储,列存储,文档存储,图形数据库(社交关系)
- 最终一致性
- CAP定理和BASE
- 高性能,高可用,高扩展
- ...

了解:3V + 3高

大数据时代的3V :主要是描述问题

海量Velume

多样Variety

实时Velocity

大数据时代的3高 : 主要是对程序的要求

高并发

高可扩

高性能

真正在公司中的实践:NoSQL + RDBMS 一起使用才是最强的。

阿里巴巴演进分析

推荐阅读:阿里云的这群疯子https://yq.aliyun.com/articles/653511

image

image

# 商品信息
- 一般存放在关系型数据库:Mysql,阿里巴巴使用的Mysql都是经过内部改动的。

# 商品描述、评论(文字居多)
- 文档型数据库:MongoDB

# 图片
- 分布式文件系统 FastDFS
- 淘宝:TFS
- Google: GFS
- Hadoop: HDFS
- 阿里云: oss

# 商品关键字 用于搜索
- 搜索引擎:solr,elasticsearch
- 阿里:Isearch 多隆

# 商品热门的波段信息
- 内存数据库:Redis,Memcache

# 商品交易,外部支付接口
- 第三方应用

Nosql的四大分类

KV键值对

  • 新浪:Redis
  • 美团:Redis + Tair
  • 阿里、百度:Redis + Memcache

文档型数据库(bson数据格式):

  • MongoDB(掌握)

基于分布式文件存储的数据库。C++编写,用于处理大量文档。 MongoDB是RDBMS和NoSQL的中间产品。MongoDB是非关系型数据库中功能最丰富的,NoSQL中最像关系型数据库的数据库。

  • ConthDB

列存储数据库

  • HBase(大数据必学)
  • 分布式文件系统

图关系数据库

用于广告推荐,社交网络

  • Neo4j、InfoGrid

image.png

Redis 入门

概述

Redis是什么?

Redis(Remote Dictionary Server ),即远程字典服务。

是一个开源的使用ANSI C语言编写、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库,并提供多种语言的API。

与memcached一样,为了保证效率,数据都是缓存在内存中。区别的是redis会周期性的把更新的数据写入磁盘或者把修改操作写入追加的记录文件,并且在此基础上实现了master-slave(主从)同步。

Redis能该干什么?

  1. 内存存储、持久化,内存是断电即失的,所以需要持久化(RDB、AOF)
  2. 高效率、用于高速缓冲
  3. 发布订阅系统
  4. 地图信息分析
  5. 计时器、计数器(eg:浏览量)
  6. 。。。

特性

  • 多样的数据类型
  • 持久化
  • 集群
  • 事务
  • … …

Linux安装

  1. 下载安装包!redis-5.0.8.tar.gz
  2. 解压Redis的安装包!程序一般放在 /opt 目录下

image-20220117102603427

image-20220117102719923

  1. 安装运行环境gcc

    image-20220117102914514

    检查是否安装上了gcc

    image-20220117102936464

  2. 执行make

    然后执行 make install

    image-20220117103217496

  3. redis默认安装路径 /usr/local/bin

    image-20220117103237521

  4. 将redis的配置文件复制到 程序安装目录 /usr/local/bin/kconfig下

    image-20220117103551397

  5. redis默认不是后台启动的,需要修改配置文件!

    image-20220117103715935

  6. 通过制定的配置文件启动redis服务

    image-20220117103740864

  7. 查看redis进程是否开启

    image-20220117103844698

    image-20220117103856937

    image-20220117103931475

  8. 关闭Redis服务 shutdown

    image-20220117103948958

    image-20220117103959375

测试性能

redis-benchmark Redis官方提供的性能测试工具,参数选项如下:

image

简单测试:

# 测试:100个并发连接 100000请求
redis-benchmark -h localhost -p 6379 -c 100 -n 100000

image-20220117104755680

基础知识

redis默认有16个数据库

image

默认使用的第0个;

16个数据库为:DB 0~DB 15 默认使用DB 0 ,可以使用select n切换到DB n,dbsize可以查看当前数据库的大小,与key数量相关。

127.0.0.1:6379> config get databases # 命令行查看数据库数量databases
1) "databases"
2) "16"

127.0.0.1:6379> select 8 # 切换数据库 DB 8
OK
127.0.0.1:6379[8]> dbsize # 查看数据库大小
(integer) 0

# 不同数据库之间 数据是不能互通的,并且dbsize 是根据库中key的个数。
127.0.0.1:6379> set name sakura 
OK
127.0.0.1:6379> SELECT 8
OK
127.0.0.1:6379[8]> get name # db8中并不能获取db0中的键值对。
(nil)
127.0.0.1:6379[8]> DBSIZE
(integer) 0
127.0.0.1:6379[8]> SELECT 0
OK
127.0.0.1:6379> keys *
1) "counter:__rand_int__"
2) "mylist"
3) "name"
4) "key:__rand_int__"
5) "myset:__rand_int__"
127.0.0.1:6379> DBSIZE # size和key个数相关
(integer) 5

keys * :查看当前数据库中所有的key。

flushdb:清空当前数据库中的键值对。

flushall:清空所有数据库的键值对。

Redis是单线程的

==Redis是单线程的,Redis是基于内存操作的。==所以Redis的性能瓶颈不是CPU,而是机器内存和网络带宽。

那么为什么Redis的速度如此快呢,性能这么高呢?官方的QPS达到10W+,这个说明不比Memeache差

Redis为什么单线程还这么快?

  • 误区1:高性能的服务器一定是多线程的?
  • 误区2:多线程(CPU上下文会切换!)一定比单线程效率高!

核心:Redis是将所有的数据放在内存中的,所以说使用单线程去操作效率就是最高的,多线程(CPU上下文会切换:耗时的操作!),对于内存系统来说,如果没有上下文切换效率就是最高的,多次读写都是在一个CPU上的,在内存存储数据情况下,单线程就是最佳的方案。

Redis五大数据类型

Redis是一个开源(BSD许可),内存存储的数据结构服务器,可用作数据库,高速缓存和消息队列代理。它支持字符串、哈希表、列表、集合、有序集合,位图,hyperloglogs等数据类型。内置复制、Lua脚本、LRU收回、事务以及不同级别磁盘持久化功能,同时通过Redis Sentinel提供高可用,通过Redis Cluster提供自动分区。

Redis-key

在redis中无论什么数据类型,在数据库中都是以key-value形式保存,通过进行对Redis-key的操作,来完成对数据库中数据的操作。

下面学习的命令:

  • exists key:判断键是否存在

  • del key:删除键值对

  • move key db:将键值对移动到指定数据库

  • expire key second:设置键值对的过期时间

  • type key:查看value的数据类型

  • unlink key 根据value选择非阻塞删除

    异步删除仅将keys从keyspace元数据中删除,真正的删除会在后续异步操作。

  • expire key 10 10秒钟:为给定的key设置过期时间

  • ttl key 查看还有多少秒过期,-1表示永不过期,-2表示已过期

127.0.0.1:6379> keys * # 查看当前数据库所有key
(empty list or set)
127.0.0.1:6379> set name qinjiang # set key
OK
127.0.0.1:6379> set age 20
OK
127.0.0.1:6379> keys *
1) "age"
2) "name"
127.0.0.1:6379> move age 1 # 将键值对移动到指定数据库
(integer) 1
127.0.0.1:6379> EXISTS age # 判断键是否存在
(integer) 0 # 不存在
127.0.0.1:6379> EXISTS name
(integer) 1 # 存在
127.0.0.1:6379> SELECT 1
OK
127.0.0.1:6379[1]> keys *
1) "age"
127.0.0.1:6379[1]> del age # 删除键值对
(integer) 1 # 删除个数


127.0.0.1:6379> set age 20
OK
127.0.0.1:6379> EXPIRE age 15 # 设置键值对的过期时间

(integer) 1 # 设置成功 开始计数
127.0.0.1:6379> ttl age # 查看key的过期剩余时间
(integer) 13
127.0.0.1:6379> ttl age
(integer) 11
127.0.0.1:6379> ttl age
(integer) 9
127.0.0.1:6379> ttl age
(integer) -2 # -2 表示key过期,-1表示key未设置过期时间

127.0.0.1:6379> get age # 过期的key 会被自动delete
(nil)
127.0.0.1:6379> keys *
1) "name"

127.0.0.1:6379> type name # 查看value的数据类型
string

关于TTL命令

Redis的key,通过TTL命令返回key的过期时间,一般来说有3种:

  1. 当前key没有设置过期时间,所以会返回-1.
  2. 当前key有设置过期时间,而且key已经过期,所以会返回-2.
  3. 当前key有设置过期时间,且key还没有过期,故会返回key的正常剩余时间.

关于重命名RENAME和RENAMENX

  • RENAME key newkey修改 key 的名称
  • RENAMENX key newkey仅当 newkey 不存在时,将 key 改名为 newkey 。

更多命令学习:https://www.redis.net.cn/order/

String

String是Redis最基本的类型,你可以理解成与Memcached一模一样的类型,一个key对应一个value。

String类型是二进制安全的。意味着Redis的string可以包含任何数据。比如jpg图片或者序列化的对象。

String类型是Redis最基本的数据类型,一个Redis中字符串value最多可以是512M

常用命令

  • get 查询对应键值

  • append 将给定的 追加到原值的末尾

  • strlen 获得值的长度

  • setnx 只有在 key 不存在时 设置 key 的值

  • incr

    • 将 key 中储存的数字值增1
    • 只能对数字值操作,如果为空,新增值为1
  • decr

    • 将 key 中储存的数字值减1
    • 只能对数字值操作,如果为空,新增值为-1
  • incrby / decrby <步长>将 key 中储存的数字值增减。自定义步长。

  • mset …

    同时设置一个或多个 key-value对

  • mget …

    同时获取一个或多个 value

  • msetnx …

    同时设置一个或多个 key-value 对,当且仅当所有给定 key 都不存在。原子性,有一个失败则都失败

  • getrange <起始位置><结束位置>

    获得值的范围,类似java中的substring,前包,后包

  • setrange <起始位置>

    用 覆写所储存的字符串值,从<起始位置>开始(索引从0开始**)。**

  • setex <过期时间>**

    设置键值的同时,设置过期时间,单位秒。

  • getset

    以新换旧,设置了新值同时获得旧值。

##########################################################################
127.0.0.1:6379> set key1 v1 # 设置值
OK
127.0.0.1:6379> get key1 # 获得值
"v1"
127.0.0.1:6379> keys * # 获得所有的key
1) "key1"
127.0.0.1:6379> EXISTS key1 # 判断某一个key是否存在
(integer) 1
127.0.0.1:6379> APPEND key1 "hello" # 追加字符串,如果当前key不存在,就相当于setkey
(integer) 7
127.0.0.1:6379> get key1
"v1hello"
127.0.0.1:6379> STRLEN key1 # 获取字符串的长度!
(integer) 7
127.0.0.1:6379> APPEND key1 ",kaungshen"
(integer) 17
127.0.0.1:6379> STRLEN key1
(integer) 17
127.0.0.1:6379> get key1
"v1hello,kaungshen"
##########################################################################
# i++
# 步长 i+=
127.0.0.1:6379> set views 0 # 初始浏览量为0
OK
127.0.0.1:6379> get views
"0"
127.0.0.1:6379> incr views # 自增1 浏览量变为1
(integer) 1
127.0.0.1:6379> incr views
(integer) 2
127.0.0.1:6379> get views
"2"
127.0.0.1:6379> decr views # 自减1 浏览量-1
(integer) 1
127.0.0.1:6379> decr views
(integer) 0
127.0.0.1:6379> decr views
(integer) -1
127.0.0.1:6379> get views
"-1"
127.0.0.1:6379> INCRBY views 10 # 可以设置步长,指定增量!
(integer) 9
127.0.0.1:6379> INCRBY views 10
(integer) 19
127.0.0.1:6379> DECRBY views 5
(integer) 14
##########################################################################
# 字符串范围 range
127.0.0.1:6379> set key1 "hello,kuangshen" # 设置 key1 的值
OK
127.0.0.1:6379> get key1
"hello,kuangshen"
127.0.0.1:6379> GETRANGE key1 0 3 # 截取字符串 [0,3]
"hell"
127.0.0.1:6379> GETRANGE key1 0 -1 # 获取全部的字符串 和 get key是一样的
"hello,kuangshen"
# 替换!
127.0.0.1:6379> set key2 abcdefg
OK
127.0.0.1:6379> get key2
"abcdefg"
127.0.0.1:6379> SETRANGE key2 1 xx # 替换指定位置开始的字符串!
(integer) 7
127.0.0.1:6379> get key2
"axxdefg"
##########################################################################
# setex (set with expire) # 设置过期时间
# setnx (set if not exist) # 不存在在设置 (在分布式锁中会常常使用!)
127.0.0.1:6379> setex key3 30 "hello" # 设置key3 的值为 hello,30秒后过期
OK
127.0.0.1:6379> ttl key3
(integer) 26
127.0.0.1:6379> get key3
"hello"
127.0.0.1:6379> setnx mykey "redis" # 如果mykey 不存在,创建mykey
(integer) 1
127.0.0.1:6379> keys *
1) "key2"
2) "mykey"
3) "key1"
127.0.0.1:6379> ttl key3
(integer) -2
127.0.0.1:6379> setnx mykey "MongoDB" # 如果mykey存在,创建失败!
(integer) 0
127.0.0.1:6379> get mykey
"redis"
##########################################################################
mset
mget
127.0.0.1:6379> mset k1 v1 k2 v2 k3 v3 # 同时设置多个值
OK
127.0.0.1:6379> keys *
1) "k1"
2) "k2"
3) "k3"
127.0.0.1:6379> mget k1 k2 k3 # 同时获取多个值
1) "v1"
2) "v2"
3) "v3"
127.0.0.1:6379> msetnx k1 v1 k4 v4 # msetnx 是一个原子性的操作,要么一起成功,要么一起
失败!
(integer) 0
127.0.0.1:6379> get k4
(nil)
# 对象
set user:1 {name:zhangsan,age:3} # 设置一个user:1 对象 值为 json字符来保存一个对象!
# 这里的key是一个巧妙的设计: user:{id}:{filed} , 如此设计在Redis中是完全OK了!
127.0.0.1:6379> mset user:1:name zhangsan user:1:age 2
OK
127.0.0.1:6379> mget user:1:name user:1:age
1) "zhangsan"
2) "2"
##########################################################################
getset # 先get然后在set
127.0.0.1:6379> getset db redis # 如果不存在值,则返回 nil
(nil)
127.0.0.1:6379> get db
"redis
127.0.0.1:6379> getset db mongodb # 如果存在值,获取原来的值,并设置新的值
"redis"
127.0.0.1:6379> get db
"mongodb"

数据结构是相同的!

String类似的使用场景:value除了是我们的字符串还可以是我们的数字! 计数器 统计多单位的数量 粉丝数 对象缓存存储!

原子性

所谓原子操作是指不会被线程调度机制打断的操作;

这种操作一旦开始,就一直运行到结束,中间不会有任何 context switch (切换到另一个线程)。

(1)在单线程中, 能够在单条指令中完成的操作都可以认为是"原子操作",因为中断只能发生于指令之间。

(2)在多线程中,不能被其它进程(线程)打断的操作就叫原子操作。

Redis单命令的原子性主要得益于Redis的单线程。

java中的i++是否是原子操作?不是

i=0;两个线程分别对i进行++100次,值是多少? 2~20

i= 0   i=0
i++
i=99
       i++
	   i=1
i=1
       i++
       i=100

i++
i=2	

最后的数字可能是2-200之间任意的一个

为什么最小值一定是2?

线程A 拿了个0,放在手里,等线程B计算到最后一步,写入i,i变成了1。
此时线程B拿到这个1,一直等到线程A计算完,线程B再完成计算,i变成2。
为什么不能更小呢?比如i = 1.
因为必须要两次覆盖才能最小。线程A和线程B一直都在使i变大。i变小的唯一途径就是被另外一个线程覆盖。
所以要想线程A的值变小,线程B必须覆盖一次A,线程B的值要想变小就必须被线程A覆盖一次。
覆盖意味着什么?
覆盖意味着i++,拿到i,i加1,然后写回。
两次覆盖就加两次。所以i最小为2.

List(列表)

单键多值

Redis 列表是简单的字符串列表,按照插入顺序排序。你可以添加一个元素到列表的头部(左边)或者尾部(右边)。

它的底层实际是个双向链表,对两端的操作性能很高,通过索引下标的操作中间的节点性能会较差。

image-20220117111158944

  • lpush/rpush … 从左边/右边插入一个或多个值。

  • lpop/rpop 从左边/右边吐出一个值。值在键在,值光键亡。

  • rpoplpush 从列表右边吐出一个值,插到列表左边。

  • lrange

    按照索引下标获得元素(从左到右)

  • lrange mylist 0 -1 0左边第一个,-1右边第一个,(0-1表示获取所有)

  • lindex 按照索引下标获得元素(从左到右)

  • llen 获得列表长度

  • linsert before 在的后面插入插入值

  • lrem 从左边删除n个value(从左到右)

  • lset将列表key下标为index的值替换成value

基本的数据类型,列表

在redis里面,我们可以把list玩成 ,栈、队列、阻塞队列! 所有的list命令都是用l开头的,Redis不区分大小命令

##########################################################################
127.0.0.1:6379> LPUSH list one # 将一个值或者多个值,插入到列表头部 (左)
(integer) 1
127.0.0.1:6379> LPUSH list two
(integer) 2
127.0.0.1:6379> LPUSH list three
(integer) 3
127.0.0.1:6379> LRANGE list 0 -1 # 获取list中值!
1) "three"
2) "two"
3) "one"
127.0.0.1:6379> LRANGE list 0 1 # 通过区间获取具体的值!
1) "three"
2) "two"
127.0.0.1:6379> Rpush list righr # 将一个值或者多个值,插入到列表位部 (右)
(integer) 4
127.0.0.1:6379> LRANGE list 0 -1
1) "three"
2) "two"
3) "one"
4) "righr"
##########################################################################
LPOP
RPOP
127.0.0.1:6379> LRANGE list 0 -1
1) "three"
2) "two"
3) "one"
4) "righr"
127.0.0.1:6379> Lpop list # 移除list的第一个元素
"three"
127.0.0.1:6379> Rpop list # 移除list的最后一个元素
"righr"
127.0.0.1:6379> LRANGE list 0 -1
1) "two"
2) "one"
##########################################################################
Lindex
127.0.0.1:6379> LRANGE list 0 -1
1) "two"
2) "one"
127.0.0.1:6379> lindex list 1 # 通过下标获得 list 中的某一个值!
"one"
127.0.0.1:6379> lindex list 0
"two"
##########################################################################
Llen
127.0.0.1:6379> Lpush list one
(integer) 1
127.0.0.1:6379> Lpush list two
(integer) 2
127.0.0.1:6379> Lpush list three
(integer) 3
127.0.0.1:6379> Llen list # 返回列表的长度
(integer) 3
##########################################################################
移除指定的值!
取关 uid
Lrem
127.0.0.1:6379> LRANGE list 0 -1
1) "three"
2) "three"
3) "two"
4) "one"
127.0.0.1:6379> lrem list 1 one # 移除list集合中指定个数的value,精确匹配
(integer) 1
127.0.0.1:6379> LRANGE list 0 -1
1) "three"
2) "three"
3) "two"
127.0.0.1:6379> lrem list 1 three
(integer) 1
127.0.0.1:6379> LRANGE list 0 -1
1) "three"
2) "two"
127.0.0.1:6379> Lpush list three
(integer) 3
127.0.0.1:6379> lrem list 2 three
(integer) 2
127.0.0.1:6379> LRANGE list 0 -1
1) "two"
##########################################################################
trim 修剪。; list 截断!
127.0.0.1:6379> keys *
(empty list or set)
127.0.0.1:6379> Rpush mylist "hello"
(integer) 1
127.0.0.1:6379> Rpush mylist "hello1"
(integer) 2
127.0.0.1:6379> Rpush mylist "hello2"
(integer) 3
127.0.0.1:6379> Rpush mylist "hello3"
(integer) 4
127.0.0.1:6379> ltrim mylist 1 2 # 通过下标截取指定的长度,这个list已经被改变了,截断了
只剩下截取的元素!
OK
127.0.0.1:6379> LRANGE mylist 0 -1
1) "hello1"
2) "hello2"
##########################################################################
rpoplpush # 移除列表的最后一个元素,将他移动到新的列表中!
127.0.0.1:6379> rpush mylist "hello"
(integer) 1
127.0.0.1:6379> rpush mylist "hello1"
(integer) 2
127.0.0.1:6379> rpush mylist "hello2"
(integer) 3
127.0.0.1:6379> rpoplpush mylist myotherlist # 移除列表的最后一个元素,将他移动到新的
列表中!
"hello2"
127.0.0.1:6379> lrange mylist 0 -1 # 查看原来的列表
1) "hello"
2) "hello1"
127.0.0.1:6379> lrange myotherlist 0 -1 # 查看目标列表中,确实存在改值!
1) "hello2"
##########################################################################
lset 将列表中指定下标的值替换为另外一个值,更新操作
127.0.0.1:6379> EXISTS list # 判断这个列表是否存在
(integer) 0
127.0.0.1:6379> lset list 0 item # 如果不存在列表我们去更新就会报错
(error) ERR no such key
127.0.0.1:6379> lpush list value1
(integer) 1
127.0.0.1:6379> LRANGE list 0 0
1) "value1"
127.0.0.1:6379> lset list 0 item # 如果存在,更新当前下标的值
OK
127.0.0.1:6379> LRANGE list 0 0
1) "item"
127.0.0.1:6379> lset list 1 other # 如果不存在,则会报错!
(error) ERR index out of range
##########################################################################
linsert # 将某个具体的value插入到列把你中某个元素的前面或者后面!
127.0.0.1:6379> Rpush mylist "hello"
(integer) 1
127.0.0.1:6379> Rpush mylist "world"
(integer) 2
127.0.0.1:6379> LINSERT mylist before "world" "other"
(integer) 3
127.0.0.1:6379> LRANGE mylist 0 -1
1) "hello"
2) "other"
3) "world"
127.0.0.1:6379> LINSERT mylist after world new
(integer) 4
127.0.0.1:6379> LRANGE mylist 0 -1
1) "hello"
2) "other"
3) "world"
4) "new"

小结bash

  • 他实际上是一个链表,before Node after , left,right 都可以插入值
  • 如果key 不存在,创建新的链表
  • 如果key存在,新增内容
  • 如果移除了所有值,空链表,也代表不存在!
  • 在两边插入或者改动值,效率最高! 中间元素,相对来说效率会低一点~

消息排队!消息队列 (Lpush Rpop), 栈( Lpush Lpop)!

Set(集合)

set中的值是不能重读的!

Redis set对外提供的功能与list类似是一个列表的功能,特殊之处在于set是可以自动排重的,当你需要存储一个列表数据,又不希望出现重复数据时,set是一个很好的选择,并且set提供了判断某个成员是否在一个set集合内的重要接口,这个也是list所不能提供的。

Redis的Set是string类型的无序集合。它底层其实是一个value为null的hash表,所以添加,删除,查找的复杂度是O(1)

常用指令

  • sadd …

    将一个或多个 member 元素加入到集合 key 中,已经存在的 member 元素将被忽略

  • smembers 取出该集合的所有值。

  • sismember 判断集合是否为含有该值,有1,没有0

  • scard返回该集合的元素个数。

  • srem … 删除集合中的某个元素。

  • spop 随机从该集合中吐出一个值。

  • srandmember 随机从该集合中取出n个值。不会从集合中删除 。

  • smove value把集合中一个值从一个集合移动到另一个集合

  • sinter 返回两个集合的交集元素。

  • sunion 返回两个集合的并集元素。

  • sdiff 返回两个集合的差集元素(key1中的,不包含key2中的)

Set数据结构是dict字典,字典是用哈希表实现的。

Java中HashSet的内部实现使用的是HashMap,只不过所有的value都指向同一个对象。Redis的set结构也是一样,它的内部也使用hash结构,所有的value都指向同一个内部值。

##########################################################################
127.0.0.1:6379> sadd myset "hello" # set集合中添加匀速
(integer) 1
127.0.0.1:6379> sadd myset "kuangshen"
(integer) 1
127.0.0.1:6379> sadd myset "lovekuangshen"
(integer) 1
127.0.0.1:6379> SMEMBERS myset # 查看指定set的所有值
1) "hello"
2) "lovekuangshen"
3) "kuangshen"
127.0.0.1:6379> SISMEMBER myset hello # 判断某一个值是不是在set集合中!
(integer) 1
127.0.0.1:6379> SISMEMBER myset world
(integer) 0
##########################################################################
127.0.0.1:6379> scard myset # 获取set集合中的内容元素个数!
(integer) 4
##########################################################################
rem
127.0.0.1:6379> srem myset hello # 移除set集合中的指定元素
(integer) 1
127.0.0.1:6379> scard myset
(integer) 3
127.0.0.1:6379> SMEMBERS myset
1) "lovekuangshen2"
2) "lovekuangshen"
3) "kuangshen"
##########################################################################
set 无序不重复集合。抽随机!
127.0.0.1:6379> SMEMBERS myset
1) "lovekuangshen2"
2) "lovekuangshen"
3) "kuangshen"
127.0.0.1:6379> SRANDMEMBER myset # 随机抽选出一个元素
"kuangshen"
127.0.0.1:6379> SRANDMEMBER myset
"kuangshen"
127.0.0.1:6379> SRANDMEMBER myset
"kuangshen"
127.0.0.1:6379> SRANDMEMBER myset
"kuangshen"
127.0.0.1:6379> SRANDMEMBER myset 2 # 随机抽选出指定个数的元素
1) "lovekuangshen"
2) "lovekuangshen2"
127.0.0.1:6379> SRANDMEMBER myset 2
1) "lovekuangshen"
2) "lovekuangshen2"
127.0.0.1:6379> SRANDMEMBER myset # 随机抽选出一个元素
"lovekuangshen2"
##########################################################################
删除定的key,随机删除key!
127.0.0.1:6379> SMEMBERS myset
1) "lovekuangshen2"
2) "lovekuangshen"
3) "kuangshen"
127.0.0.1:6379> spop myset # 随机删除一些set集合中的元素!
"lovekuangshen2"
127.0.0.1:6379> spop myset
"lovekuangshen"
127.0.0.1:6379> SMEMBERS myset
1) "kuangshen"
##########################################################################
将一个指定的值,移动到另外一个set集合!
127.0.0.1:6379> sadd myset "hello"
(integer) 1
127.0.0.1:6379> sadd myset "world"
(integer) 1
127.0.0.1:6379> sadd myset "kuangshen"
(integer) 1
127.0.0.1:6379> sadd myset2 "set2"
(integer) 1
127.0.0.1:6379> smove myset myset2 "kuangshen" # 将一个指定的值,移动到另外一个set集
合!
(integer) 1
127.0.0.1:6379> SMEMBERS myset
1) "world"
2) "hello"
127.0.0.1:6379> SMEMBERS myset2
1) "kuangshen"
2) "set2"
##########################################################################
微博,B站,共同关注!(并集)
数字集合类:
- 差集 SDIFF
- 交集
- 并集
127.0.0.1:6379[8]> sadd key2 a
(integer) 1
127.0.0.1:6379[8]> sadd key2 b
(integer) 1
127.0.0.1:6379[8]> sadd key2 c
(integer) 1
127.0.0.1:6379[8]> sadd key3 c
(integer) 1
127.0.0.1:6379[8]> sadd key3 d
(integer) 1
127.0.0.1:6379[8]> sadd key3 e
(integer) 1
127.0.0.1:6379> SDIFF key2 key3 # 差集
1) "b"
2) "a"
127.0.0.1:6379> SINTER key2 key3 # 交集 共同好友就可以这样实现
1) "c"
127.0.0.1:6379> SUNION key2 key3 # 并集
1) "b"
2) "c"
3) "e"
4) "a"
5) "d"

微博,A用户将所有关注的人放在一个set集合中!将它的粉丝也放在一个集合中! 共同关注,共同爱好,二度好友,推荐好友!(六度分割理论)

Hash(哈希)

Redis hash 是一个键值对集合。

Redis hash是一个string类型的field和value的映射表,hash特别适合用于存储对象。

类似Java里面的Map<String,Object>

用户ID为查找的key,存储的value用户对象包含姓名,年龄,生日等信息,如果用普通的key/value结构来存储

主要有以下2种存储方式:

Map集合,key-map! 时候这个值是一个map集合! 本质和String类型没有太大区别,还是一个简单的 key-vlaue!

set myhash field kuangshen

常用命令

  • hset 给集合中的 键赋值
  • hget 从集合取出 value
  • hmset … 批量设置hash的值
  • hexists查看哈希表 key 中,给定域 field 是否存在。
  • hkeys 列出该hash集合的所有field
  • hvals 列出该hash集合的所有value
  • hincrby 为哈希表 key 中的域 field 的值加上增量 1 -1
  • hsetnx 将哈希表 key 中的域 field 的值设置为 value ,当且仅当域 field 不存在 .
##########################################################################
127.0.0.1:6379> hset myhash field1 kuangshen # set一个具体 key-vlaue
(integer) 1
127.0.0.1:6379> hget myhash field1 # 获取一个字段值
"kuangshen"
127.0.0.1:6379> hmset myhash field1 hello field2 world # set多个 key-vlaue
OK
127.0.0.1:6379> hmget myhash field1 field2 # 获取多个字段值
1) "hello"
2) "world"
127.0.0.1:6379> hgetall myhash # 获取全部的数据,
1) "field1"
2) "hello"
3) "field2"
4) "world"
127.0.0.1:6379> hdel myhash field1 # 删除hash指定key字段!对应的value值也就消失了!
(integer) 1
127.0.0.1:6379> hgetall myhash
1) "field2"
2) "world"
##########################################################################
hlen
127.0.0.1:6379> hmset myhash field1 hello field2 world
OK
127.0.0.1:6379> HGETALL myhash
1) "field2"
2) "world"
3) "field1"
4) "hello"
127.0.0.1:6379> hlen myhash # 获取hash表的字段数量!
(integer) 2
##########################################################################
127.0.0.1:6379> HEXISTS myhash field1 # 判断hash中指定字段是否存在!
(integer) 1
127.0.0.1:6379> HEXISTS myhash field3
(integer) 0
##########################################################################
# 只获得所有field
# 只获得所有value
127.0.0.1:6379> hkeys myhash # 只获得所有field
1) "field2"
2) "field1"
127.0.0.1:6379> hvals myhash # 只获得所有value
1) "world"
2) "hello"
##########################################################################
incr 
127.0.0.1:6379> hset myhash field3 5 #指定增量!
(integer) 1
127.0.0.1:6379> HINCRBY myhash field3 1
(integer) 6
127.0.0.1:6379> HINCRBY myhash field3 -1
(integer) 5
127.0.0.1:6379> hsetnx myhash field4 hello # 如果不存在则可以设置
(integer) 1
127.0.0.1:6379> hsetnx myhash field4 world # 如果存在则不能设置
(integer) 0

hash变更的数据 user name age,尤其是是用户信息之类的,经常变动的信息! hash 更适合于对象的 存储,String更加适合字符串存储!

image-20220117125837344

通过 key(用户ID) + field(属性标签) 就可以操作对应属性数据了,既不需要重复存储数据,也不会带来序列化和并发修改控制的问题

Zset(有序集合)

常用命令:

  • zadd …

    将一个或多个 member 元素及其 score 值加入到有序集 key 当中。

  • zrange [WITHSCORES]

    返回有序集 key 中,下标在 之间的元素

    带WITHSCORES,可以让分数一起和值返回到结果集。

  • zrangebyscore key minmax [withscores] [limit offset count]

    返回有序集 key 中,所有 score 值介于 min 和 max 之间(包括等于 min 或 max )的成员。有序集成员按 score 值递增(从小到大)次序排列。

  • zrevrangebyscore key maxmin [withscores] [limit offset count]

    同上,改为从大到小排列。

  • zincrby 为元素的score加上增量

  • zrem 删除该集合下,指定值的元素

  • zcount 统计该集合,分数区间内的元素个数

  • zrank 返回该值在集合中的排名,从0开始。

在set的基础上,增加了一个值,set k1 v1 zset k1 score1 v1
127.0.0.1:6379> hvals myhash # 只获得所有value
1) "world"
2) "hello"
##########################################################################
incr decr
127.0.0.1:6379> hset myhash field3 5 #指定增量!
(integer) 1
127.0.0.1:6379> HINCRBY myhash field3 1
(integer) 6
127.0.0.1:6379> HINCRBY myhash field3 -1
(integer) 5
127.0.0.1:6379> hsetnx myhash field4 hello # 如果不存在则可以设置
(integer) 1
127.0.0.1:6379> hsetnx myhash field4 world # 如果存在则不能设置
(integer) 0
127.0.0.1:6379> zadd myset 1 one # 添加一个值
(integer) 1
127.0.0.1:6379> zadd myset 2 two 3 three # 添加多个值
(integer) 2
127.0.0.1:6379> ZRANGE myset 0 -1
1) "one"
2) "two"
3) "three"
##########################################################################
排序如何实现
127.0.0.1:6379> zadd salary 2500 xiaohong # 添加三个用户
(integer) 1
127.0.0.1:6379> zadd salary 5000 zhangsan
(integer) 1
127.0.0.1:6379> zadd salary 500 kaungshen
(integer) 1
# ZRANGEBYSCORE key min max
127.0.0.1:6379> ZRANGEBYSCORE salary -inf +inf # 显示全部的用户 从小到大!
1) "kaungshen"
2) "xiaohong"
3) "zhangsan"
127.0.0.1:6379> ZREVRANGE salary 0 -1 # 从大到进行排序!
1) "zhangsan"
2) "kaungshen"
127.0.0.1:6379> ZRANGEBYSCORE salary -inf +inf withscores # 显示全部的用户并且附带成1) "kaungshen"
2) "500"
3) "xiaohong"
4) "2500"
5) "zhangsan"
6) "5000"
127.0.0.1:6379> ZRANGEBYSCORE salary -inf 2500 withscores # 显示工资小于2500员工的升
序排序!
1) "kaungshen"
2) "500"
3) "xiaohong"
4) "2500"
##########################################################################
# 移除rem中的元素
127.0.0.1:6379> zrange salary 0 -1
1) "kaungshen"
2) "xiaohong"
3) "zhangsan"
127.0.0.1:6379> zrem salary xiaohong # 移除有序集合中的指定元素
(integer) 1
127.0.0.1:6379> zrange salary 0 -1
1) "kaungshen"
2) "zhangsan"
127.0.0.1:6379> zcard salary # 获取有序集合中的个数
(integer) 2
##########################################################################
127.0.0.1:6379> zadd myset 1 hello
(integer) 1
127.0.0.1:6379> zadd myset 2 world 3 kuangshen
(integer) 2
127.0.0.1:6379> zcount myset 1 3 # 获取指定区间的成员数量!
(integer) 3
127.0.0.1:6379> zcount myset 1 2
(integer) 2

其与的一些API,通过我们的学习吗,你们剩下的如果工作中有需要,这个时候你可以去查查看官方文 档!

案例思路:set 排序

  • 存储班级成绩表,工资表排序!
  • 普通消息,1, 重要消息 2,带权重进行判断!
  • 排行榜应用实现,取Top N 测试!

SortedSet(zset)是Redis提供的一个非常特别的数据结构,一方面它等价于Java的数据结构Map<String, Double>,可以给每一个元素value赋予一个权重score,另一方面它又类似于TreeSet,内部的元素会按照权重score进行排序,可以得到每个元素的名次,还可以通过score的范围来获取元素的列表。

zset底层使用了两个数据结构

(1)hash,hash的作用就是关联元素value和权重score,保障元素value的唯一性,可以通过元素value找到相应的score值。

(2)跳跃表,跳跃表的目的在于给元素value排序,根据score的范围获取元素列表。

三种特殊数据

Geospatial 地理位置

Redis 3.2 中增加了对GEO类型的支持。GEO,Geographic,地理信息的缩写。该类型,就是元素的2维坐标,在地图上就是经纬度。redis基于该类型,提供了经纬度设置,查询,范围查询,距离查询,经纬度Hash等常见操作。

这个功能可以推算地理位置的信息,两地之间的距离,方圆 几里的人! 可以查询一些测试数据:http://www.jsons.cn/lngcodeinfo/0706D99C19A781A3/ 只有 六个命令:

image.png

官方文档:https://www.redis.net.cn/order/3685.html

getadd

# getadd 添加地理位置
# 规则:两级无法直接添加,我们一般会下载城市数据,直接通过java程序一次性导入!
# 有效的经度从-180度到180度。
# 有效的纬度从-85.05112878度到85.05112878度。
# 当坐标位置超出上述指定范围时,该命令将会返回一个错误。
# 参数 key 值()
127.0.0.1:6379> geoadd china:city 116.40 39.90 beijing
(integer) 1
127.0.0.1:6379> geoadd china:city 121.47 31.23 shanghai
(integer) 1
127.0.0.1:6379> geoadd china:city 106.50 29.53 chongqi 114.05 22.52 shengzhen
(integer) 2
127.0.0.1:6379> geoadd china:city 120.16 30.24 hangzhou 108.96 34.26 xian
(integer) 2

getpos

获得当前定位:一定是一个坐标值!

127.0.0.1:6379> GEOPOS china:city beijing # 获取指定的城市的经度和纬度!
1) 1) "116.39999896287918091"
2) "39.90000009167092543"
127.0.0.1:6379> GEOPOS china:city beijing chongqi
1) 1) "116.39999896287918091"
2) "39.90000009167092543"
2) 1) "106.49999767541885376"
2) "29.52999957900659211"

GEODIST

两人之间的距离! 单位:

  • m 表示单位为米。
  • km 表示单位为千米。
  • mi 表示单位为英里。
  • ft 表示单位为英尺。
127.0.0.1:6379> GEODIST china:city beijing shanghai km # 查看上海到北京的直线距离
"1067.3788"
127.0.0.1:6379> GEODIST china:city beijing chongqi km # 查看重庆到北京的直线距离
"1464.0708"

georadius 以给定的经纬度为中心, 找出某一半径内的元素

我附近的人? (获得所有附近的人的地址,定位!)通过半径来查询! 获得指定数量的人,200 所有数据应该都录入:china:city ,才会让结果更加请求!

127.0.0.1:6379> GEORADIUS china:city 110 30 1000 km # 以110,30 这个经纬度为中心,寻
找方圆1000km内的城市
1) "chongqi"
2) "xian"
3) "shengzhen"
4) "hangzhou"
127.0.0.1:6379> GEORADIUS china:city 110 30 500 km
1) "chongqi"
2) "xian"
127.0.0.1:6379> GEORADIUS china:city 110 30 500 km withdist # 显示到中间距离的位置
1) 1) "chongqi"
2) "341.9374"
2) 1) "xian"
2) "483.8340"
127.0.0.1:6379> GEORADIUS china:city 110 30 500 km withcoord # 显示他人的定位信息
1) 1) "chongqi"
2) 1) "106.49999767541885376"
2) "29.52999957900659211"
2) 1) "xian"
2) 1) "108.96000176668167114"
2) "34.25999964418929977"
127.0.0.1:6379> GEORADIUS china:city 110 30 500 km withdist withcoord count 1 #筛选出指定的结果!
1) 1) "chongqi"
2) "341.9374"
3) 1) "106.49999767541885376"
2) "29.52999957900659211"
127.0.0.1:6379> GEORADIUS china:city 110 30 500 km withdist withcoord count 2
1) 1) "chongqi"
2) "341.9374"
3) 1) "106.49999767541885376"
2) "29.52999957900659211"
2) 1) "xian"
2) "483.8340"
3) 1) "108.96000176668167114"
2) "34.25999964418929977"

GEORADIUSBYMEMBER

# 找出位于指定元素周围的其他元素!
127.0.0.1:6379> GEORADIUSBYMEMBER china:city beijing 1000 km
1) "beijing"
2) "xian"
127.0.0.1:6379> GEORADIUSBYMEMBER china:city shanghai 400 km
1) "hangzhou"
2) "shanghai"

GEOHASH 命令 - 返回一个或多个位置元素的 Geohash 表示

该命令将返回11个字符的Geohash字符串

# 将二维的经纬度转换为一维的字符串,如果两个字符串越接近,那么则距离越近!
127.0.0.1:6379> geohash china:city beijing chongqing
1) "wx4fbxxfke0"
2) "xt4purb89n0"

GEO 底层的实现原理其实就是 Zset!我们可以使用Zset命令来操作geo!

127.0.0.1:6379> ZRANGE china:city 0 -1 # 查看地图中全部的元素
1) "chongqi"
2) "xian"
3) "shengzhen"
4) "hangzhou"
5) "shanghai"
6) "beijing"
127.0.0.1:6379> zrem china:city beijing # 移除指定元素!
(integer) 1
127.0.0.1:6379> ZRANGE china:city 0 -1
1) "chongqi"
2) "xian"
3) "shengzhen"
4) "hangzhou"
5) "shanghai"

Hyperloglog

什么是基数?

A {1,3,5,7,8,7} B{1,3,5,7,8}

基数(不重复的元素) = 5,可以接受误差!

简介

Redis 2.8.9 版本就更新了 Hyperloglog 数据结构! Redis Hyperloglog 基数统计的算法!

优点:占用的内存是固定,2^64 不同的元素的基数,只需要废 12KB内存!如果要从内存角度来比较的 话 Hyperloglog 首选!

在工作当中,我们经常会遇到与统计相关的功能需求,比如统计网站PV(PageView页面访问量),可以使用Redis的incr、incrby轻松实现。

但像UV(UniqueVisitor,独立访客)、独立IP数、搜索记录数等需要去重和计数的问题如何解决?这种求集合中不重复元素个数的问题称为基数问题。

解决基数问题有很多种方案:

(1)数据存储在MySQL表中,使用distinct count计算不重复个数

(2)使用Redis提供的hash、set、bitmaps等数据结构来处理

以上的方案结果精确,但随着数据不断增加,导致占用空间越来越大,对于非常大的数据集是不切实际的。

能否能够降低一定的精度来平衡存储空间?Redis推出了HyperLogLog

Redis HyperLogLog 是用来做基数统计的算法,HyperLogLog 的优点是,在输入元素的数量或者体积非常非常大时,计算基数所需的空间总是固定的、并且是很小的。

在 Redis 里面,每个 HyperLogLog 键只需要花费 12 KB 内存,就可以计算接近 2^64 个不同元素的基数。这和计算基数时,元素越多耗费内存就越多的集合形成鲜明对比。

但是,因为 HyperLogLog 只会根据输入元素来计算基数,而不会储存输入元素本身,所以 HyperLogLog 不能像集合那样,返回输入的各个元素。

测试使用

127.0.0.1:6379> PFadd mykey a b c d e f g h i j # 创建第一组元素 mykey
(integer) 1
127.0.0.1:6379> PFCOUNT mykey # 统计 mykey 元素的基数数量
(integer) 10
127.0.0.1:6379> PFadd mykey2 i j z x c v b n m # 创建第二组元素 mykey2
(integer) 1
127.0.0.1:6379> PFCOUNT mykey2
(integer) 9
127.0.0.1:6379> PFMERGE mykey3 mykey mykey2 # 合并两组 mykey mykey2 => mykey3 并集
OK
127.0.0.1:6379> PFCOUNT mykey3 # 看并集的数量!
(integer) 15
  1. pfadd

(1)格式

pfadd < element> [element …] 添加指定元素到 HyperLogLog 中

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-d8FIvlxD-1642577976053)(C:/Users/77/AppData/Local/Temp/ksohtml/wps665F.tmp.jpg)]

(2)实例

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-kwqtIZCt-1642577976054)(C:/Users/77/AppData/Local/Temp/ksohtml/wps6660.tmp.jpg)]

? 将所有元素添加到指定HyperLogLog数据结构中。如果执行命令后HLL估计的近似基数发生变化,则返回1,否则返回0。

2.pfcount

(1)格式

pfcount [key …] 计算HLL的近似基数,可以计算多个HLL,比如用HLL存储每天的UV,计算一周的UV可以使用7天的UV合并计算即可

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-DBZDL2ek-1642577976054)(C:/Users/77/AppData/Local/Temp/ksohtml/wps6661.tmp.jpg)]

(2)实例

img

  1. pfmerge

(1)格式

pfmerge [sourcekey …] 将一个或多个HLL合并后的结果存储在另一个HLL中,比如每月活跃用户可以使用每天的活跃用户来合并计算可得

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-RyraT8SB-1642577976055)(C:/Users/77/AppData/Local/Temp/ksohtml/wps6673.tmp.jpg)]

(2)实例

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-XE3FgZ2x-1642577976055)(C:/Users/77/AppData/Local/Temp/ksohtml/wps6674.tmp.jpg)]

**如果允许容错,那么一定可以使用 Hyperloglog ! **

如果不允许容错,就使用 set 或者自己的数据类型即可!

Bitmap

现代计算机用二进制(位) 作为信息的基础单位, 1个字节等于8位, 例如“abc”字符串是由3个字节组成, 但实际在计算机存储时将其用二进制表示, “abc”分别对应的ASCII码分别是97、 98、 99, 对应的二进制分别是01100001、 01100010和01100011,如下图

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-umIBHqyR-1642577976055)(C:/Users/77/AppData/Local/Temp/ksohtml/wpsBAA6.tmp.jpg)]

合理地使用操作位能够有效地提高内存使用率和开发效率。

Redis提供了Bitmaps这个“数据类型”可以实现对位的操作:

(1) Bitmaps本身不是一种数据类型, 实际上它就是字符串(key-value) , 但是它可以对字符串的位进行操作。

(2) Bitmaps单独提供了一套命令, 所以在Redis中使用Bitmaps和使用字符串的方法不太相同。 可以把Bitmaps想象成一个以位为单位的数组, 数组的每个单元只能存储0和1, 数组的下标在Bitmaps中叫做偏移量。

img

位存储

统计用户信息,活跃,不活跃! 登录 、 未登录! 打卡,365打卡! 两个状态的,都可以使用 Bitmaps! Bitmap 位图,数据结构! 都是操作二进制位来进行记录,就只有0 和 1 两个状态!

365 天 = 365 bit

1字节 = 8bit

46 个字节左右!

测试

image.png

使用bitmap 来记录 周一到周日的打卡!

周一:1

周二:0

周三:0

周四:1 …

image.png

查看某一天是否有打卡!

127.0.0.1:6379> getbit sign 3
(integer) 1
127.0.0.1:6379> getbit sign 6
(integer) 0

统计操作,统计 打卡的天数!

127.0.0.1:6379> bitcount sign # 统计这周的打卡记录,就可以看到是否有全勤!
(integer) 3

事务

Redis 事务本质:一组命令的集合! 一个事务中的所有命令都会被序列化,在事务执行过程的中,会按照顺序执行!

一次性、顺序性、排他性!执行一系列的命令!

------ 队列 set set set 执行------

Redis事务没有没有隔离级别的概念! 所有的命令在事务中,并没有直接被执行!只有发起执行命令的时候才会执行!

Redis是单条命令式保存原子性的,但是事务不保证原子性! Exec

redis的事务:

  • 开启事务(multi)
  • 命令入队(…)
  • 执行事务(exec)
  • discard放弃组队
  • watch
  • unwatch

正常执行事务!

127.0.0.1:6379> multi # 开启事务
OK
# 命令入队
127.0.0.1:6379> set k1 v1
QUEUED
127.0.0.1:6379> set k2 v2
QUEUED
127.0.0.1:6379> get k2
QUEUED
127.0.0.1:6379> set k3 v3
QUEUED
127.0.0.1:6379> exec # 执行事务
1) OK
2) OK
3) "v2"
4) OK

放弃事务!(DISCARD )

127.0.0.1:6379> multi # 开启事务
OK
127.0.0.1:6379> set k1 v1
QUEUED
127.0.0.1:6379> set k2 v2
QUEUED
127.0.0.1:6379> set k4 v4
QUEUED
127.0.0.1:6379> DISCARD # 取消事务
OK
127.0.0.1:6379> get k4 # 事务队列中命令都不会被执行!
(nil)

编译型异常(代码有问题! 命令有错!) 事务中所有的命令都不会被执行!

127.0.0.1:6379> multi
OK
127.0.0.1:6379> set k1 v1
QUEUED
127.0.0.1:6379> set k2 v2
QUEUED
127.0.0.1:6379> set k3 v3
QUEUED
127.0.0.1:6379> getset k3 # 错误的命令
(error) ERR wrong number of arguments for 'getset' command
127.0.0.1:6379> set k4 v4
QUEUED
127.0.0.1:6379> set k5 v5
QUEUED
127.0.0.1:6379> exec # 执行事务报错!
(error) EXECABORT Transaction discarded because of previous errors.
127.0.0.1:6379> get k5 # 所有的命令都不会被执行!
(nil)

运行时异常(1/0), 如果事务队列中存在语法性,那么执行命令的时候,其他命令是可以正常执行的,错误命令抛出异常!

127.0.0.1:6379> set k1 "v1"
OK
127.0.0.1:6379> multi
OK
127.0.0.1:6379> incr k1 # 会执行的时候失败!
QUEUED
127.0.0.1:6379> set k2 v2
QUEUED
127.0.0.1:6379> set k3 v3
QUEUED
127.0.0.1:6379> get k3
QUEUED
127.0.0.1:6379> exec
1) (error) ERR value is not an integer or out of range # 虽然第一条命令报错了,但是
依旧正常执行成功了!
2) OK
3) OK
4) "v3"
127.0.0.1:6379> get k2
"v2"
127.0.0.1:6379> get k3
"v3"

监控! Watch (面试常问!)

悲观锁:

  • 很悲观,认为什么时候都会出问题,无论做什么都会加锁!

乐观锁:

  • 很乐观,认为什么时候都不会出问题,所以不会上锁! - - 更新数据的时候去判断一下,在此期间是否有人修改过这个数据,
  • 获取version
  • 更新的时候比较 version

Redis测监视测试

正常执行成功

127.0.0.1:6379> set money 100
OK
127.0.0.1:6379> set out 0
OK
127.0.0.1:6379> watch money # 监视 money 对象
OK
127.0.0.1:6379> multi # 事务正常结束,数据期间没有发生变动,这个时候就正常执行成功!
OK
127.0.0.1:6379> DECRBY money 20
QUEUED
127.0.0.1:6379> INCRBY out 20
QUEUED
127.0.0.1:6379> exec
1) (integer) 80
2) (integer) 20

测试多线程修改值 , 使用watch 可以当做redis的乐观锁操作!

127.0.0.1:6379> watch money # 监视 money
OK
127.0.0.1:6379> multi
OK
127.0.0.1:6379> DECRBY money 10
QUEUED
127.0.0.1:6379> INCRBY out 10
QUEUED
127.0.0.1:6379> exec # 执行之前,另外一个线程,修改了我们的值,这个时候,就会导致事务执行失
败!
(nil)

如果修改失败,获取最新的值就好

image.png

redis事务的三大特性

  • 单独的隔离操作
    • 事务中的所有命令都会序列化、按顺序地执行。事务在执行的过程中,不会被其他客户端发送来的命令请求所打断。
  • 没有隔离级别的概念
    • 队列中的命令没有提交之前都不会实际被执行,因为事务提交前任何指令都不会被实际执行
  • 不保证原子性
    • 事务中如果有一条命令执行失败,其后的命令仍然会被执行,没有回滚

Jedis

我们要使用 Java 来操作 Redis,知其然并知其所以然,授人以渔! 学习不能急躁,慢慢来会很快!

什么是Jedis 是 Redis 官方推荐的 java连接开发工具! 使用Java 操作Redis 中间件!如果你要使用 java操作redis,那么一定要对Jedis 十分的熟悉!

测试

  1. 导入对应的依赖
<!--导入jedis的包-->
<dependencies>
<!-- https://mvnrepository.com/artifact/redis.clients/jedis -->
    <dependency>
        <groupId>redis.clients</groupId>
        <artifactId>jedis</artifactId>
         <version>3.2.0</version>
    </dependency>
    <!--fastjson-->
    <dependency>
        <groupId>com.alibaba</groupId>
        <artifactId>fastjson</artifactId>
        <version>1.2.62</version>
    </dependency>
</dependencies>
  1. 编码测试:
  • 连接数据库

  • 操作命令

  • 断开连接!

  • 连接阿里云的步骤

    • 0.确定阿里云安全组开启了6379端口

    • 1.注释bind 127.0.0.0

    • 2.把protected-mode设置为no

    • 3.查看防火墙端口是都开启了6379

    • firewall-cmd --list-ports
      
    • 4.开启6379/tcp防火墙端口

    • 5.重启redis

    • 1、firewall-cmd --zone=public --add-port=6379/tcp --permanet  # 开放端口
      2、systemctl restart firewalld.service  # 重启
      
package xiaoqi;

import redis.clients.jedis.Jedis;

public class TestPing {
    public static void main(String[] args) {
        // 1. new jedis对象
        Jedis jedis = new Jedis("8.142.110.229",6379);
        //jedis.auth("redis的密码,有就写没有就不写");
        // jedis 所有的命令就是我们之前学习的所有指令!所以之前的指令学习很重要!
        System.out.println(jedis.ping());
    }
}

输出: image.png

常用的API

  • String
  • List
  • Set
  • Hash
  • Zset

所有的api命令,就是我们对应的上面学习的指令,一个都没有变化!

事务

public class TestTX {
    public static void main(String[] args) {
            Jedis jedis = new Jedis("127.0.0.1", 6379);
            jedis.flushDB();
            JSONObject jsonObject = new JSONObject();
            jsonObject.put("hello","world");
            jsonObject.put("name","kuangshen");
            // 开启事务
            Transaction multi = jedis.multi();
            String result = jsonObject.toJSONString();
            // jedis.watch(result)
        try {
            multi.set("user1",result);
            multi.set("user2",result);
            int i = 1/0 ; // 代码抛出异常事务,执行失败!
            multi.exec(); // 执行事务!
        } catch (Exception e) {
             multi.discard(); // 放弃事务
               e.printStackTrace();
        } finally {
            System.out.println(jedis.get("user1"));
            System.out.println(jedis.get("user2"));
            jedis.close(); // 关闭连接
        }
    }
}

SpringBoot整合

SpringBoot 操作数据:spring-data jpa jdbc mongodb redis!

SpringData 也是和 SpringBoot 齐名的项目!

说明: 在 SpringBoot2.x 之后,原来使用的jedis 被替换为了 lettuce

jedis : 采用的直连,多个线程操作的话,是不安全的,如果想要避免不安全的,使用 jedis pool 连接 池! 更像 BIO 模式

lettuce : 采用netty,实例可以再多个线程中进行共享,不存在线程不安全的情况!可以减少线程数据 了,更像 NIO 模式

源码分析:

@Bean
@ConditionalOnMissingBean(name = "redisTemplate") // 我们可以自己定义一个redisTemplate来替换这个默认的!
    public RedisTemplate<Object, Object>redisTemplate(RedisConnectionFactory redisConnectionFactory)throws UnknownHostException {
        // 默认的 RedisTemplate 没有过多的设置,redis 对象都是需要序列化!
        // 两个泛型都是 Object, Object 的类型,我们后使用需要强制转换 <String, Object>
        RedisTemplate<Object, Object> template = new RedisTemplate<>();
        template.setConnectionFactory(redisConnectionFactory);
        return template;
}
@Bean
@ConditionalOnMissingBean // 由于 String 是redis中最常使用的类型,所以说单独提出来了一个bean!
    public StringRedisTemplate stringRedisTemplate(RedisConnectionFactory redisConnectionFactory)throws UnknownHostException {
        StringRedisTemplate template = new StringRedisTemplate();
        template.setConnectionFactory(redisConnectionFactory);
        return template;
    }

整合测试一下

  1. 导入依赖
<!-- 操作redis -->
<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
  1. 配置连接
# 配置redis
spring.redis.host=127.0.0.1
spring.redis.port=6379
  1. 测试!
@SpringBootTest
class Redis02SpringbootApplicationTests {
    @Autowired
    private RedisTemplate redisTemplate;
    @Test
    void contextLoads() {
        // redisTemplate 操作不同的数据类型,api和我们的指令是一样的
        // opsForValue 操作字符串 类似String
        // opsForList 操作List 类似List
        // opsForSet
        // opsForHash
        // opsForZSet
        // opsForGeo
        // opsForHyperLogLog
        // 除了进本的操作,我们常用的方法都可以直接通过redisTemplate操作,比如事务,和基本的 CRUD
        // 获取redis的连接对象
        // RedisConnection connection =
        redisTemplate.getConnectionFactory().getConnection();
        // connection.flushDb();
        // connection.flushAll();
        redisTemplate.opsForValue().set("mykey","关注狂神说公众号");
        System.out.println(redisTemplate.opsForValue().get("mykey"));
    }
}

image.png

关于对象的保存:

image.png

我们来编写一个自己的 RedisTemplete

package com.kuang.config;
import com.fasterxml.jackson.annotation.JsonAutoDetect;
import com.fasterxml.jackson.annotation.PropertyAccessor;
import com.fasterxml.jackson.databind.ObjectMapper;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.redis.connection.RedisConnectionFactory;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.serializer.Jackson2JsonRedisSerializer;
import org.springframework.data.redis.serializer.StringRedisSerializer;
@Configuration
public class RedisConfig {
    // 这是我给大家写好的一个固定模板,大家在企业中,拿去就可以直接使用!
    // 自己定义了一个 RedisTemplate
    @Bean
    @SuppressWarnings("all")
    public RedisTemplate<String, Object> redisTemplate(RedisConnectionFactory factory) {
        // 我们为了自己开发方便,一般直接使用 <String,Object>
        RedisTemplate<String, Object> template = new RedisTemplate<String,Object>();
        template.setConnectionFactory(factory);
        // Json序列化配置
        Jackson2JsonRedisSerializer jackson2JsonRedisSerializer = new
        Jackson2JsonRedisSerializer(Object.class);
        ObjectMapper om = new ObjectMapper();
        om.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY);
        om.enableDefaultTyping(ObjectMapper.DefaultTyping.NON_FINAL);
        jackson2JsonRedisSerializer.setObjectMapper(om);
        // String 的序列化
        StringRedisSerializer stringRedisSerializer = new StringRedisSerializer();
        // key采用String的序列化方式
        template.setKeySerializer(stringRedisSerializer);
        // hash的key也采用String的序列化方式
        template.setHashKeySerializer(stringRedisSerializer);
        // value序列化方式采用jackson
        template.setValueSerializer(jackson2JsonRedisSerializer);
        // hash的value序列化方式采用jackson
        template.setHashValueSerializer(jackson2JsonRedisSerializer);
        template.afterPropertiesSet();
        return template;
    }
} 

所有的redis操作,其实对于java开发人员来说,十分的简单,更重要是要去理解redis的思想和每一种数 据结构的用处和作用场景!

Redis.conf详解

启动的时候,就通过配置文件来启动! 工作中,一些小小的配置,可以让你脱颖而出!

单位

image.png

  1. 配置文件 unit单位 对大小写不敏感!

包含 配置多个文件

image-20220118164935159

就是好比我们学习Spring、Improt, include

网络

bind 127.0.0.1 # 绑定的本机的ip,远程连接需要注释
protected-mode yes # 保护模式 不是本地需要改为no
port 6379 # 端口设置

通用 GENERAL

daemonize yes # 以守护进程的方式运行,默认是 no,我们需要自己开启为yes!
pidfile /var/run/redis_6379.pid # 如果以后台的方式运行,我们就需要指定一个 pid 文件!
# 日志
# Specify the server verbosity level.
# This can be one of:
# debug (a lot of information, useful for development/testing)
# verbose (many rarely useful info, but not a mess like the debug level)
# notice (moderately verbose, what you want in production probably) 生产环境
# warning (only very important / critical messages are logged)
loglevel notice
logfile "" # 日志的文件位置名
databases 16 # 数据库的数量,默认是 16 个数据库
always-show-logo yes # 是否总是显示LOGO

快照

持久化, 在规定的时间内,执行了多少次操作,则会持久化到文件 .rdb. aof

redis 是内存数据库,如果没有持久化,那么数据断电及失!

# 如果900s内,如果至少有一个1 key进行了修改,我们及进行持久化操作
save 900 1
# 如果300s内,如果至少10 key进行了修改,我们及进行持久化操作
save 300 10
# 如果60s内,如果至少10000 key进行了修改,我们及进行持久化操作
save 60 10000
# 我们之后学习持久化,会自己定义这个测试!
stop-writes-on-bgsave-error yes # 持久化如果出错,是否还需要继续工作!
rdbcompression yes # 是否压缩 rdb 文件,需要消耗一些cpu资源!
rdbchecksum yes # 保存rdb文件的时候,进行错误的检查校验!
dir ./ # rdb 文件保存的目录!

REPLICATION 复制,我们后面讲解主从复制的,时候再进行讲解

SECURITY 安全

127.0.0.1:6379> ping
PONG
127.0.0.1:6379> config get requirepass # 获取redis的密码
1) "requirepass"
2) ""
127.0.0.1:6379> config set requirepass "123456" # 设置redis的密码
OK
127.0.0.1:6379> config get requirepass # 发现所有的命令都没有权限了
(error) NOAUTH Authentication required.
127.0.0.1:6379> ping
(error) NOAUTH Authentication required.
127.0.0.1:6379> auth 123456 # 使用密码进行登录!
OK
127.0.0.1:6379> config get requirepass
1) "requirepass"
2) "123456"

限制 CLIENTS

maxclients 10000 # 设置能连接上redis的最大客户端的数量
maxmemory <bytes> # redis 配置最大的内存容量
maxmemory-policy noeviction # 内存到达上限之后的处理策略
1、volatile-lru:只对设置了过期时的key进行LRU(默认值)
2、allkeys-lru : 删除lru算法的key
3、volatile-random:随机删除即将过期key
4、allkeys-random:随机删除
5、volatile-ttl : 删除即将过期的
6、noeviction : 永不过期,返回错误

APPEND ONLY 模式 aof配置

appendonly no # 默认是不开启aof模式的,默认是使用rdb方式持久化的,在大部分所有的情况下,rdb完全够用!
appendfilename "appendonly.aof" # 持久化的文件的名字
# appendfsync always # 每次修改都会 sync。消耗性能
appendfsync everysec # 每秒执行一次 sync,可能会丢失这1s的数据!
# appendfsync no # 不执行 sync,这个时候操作系统自己同步数据,速度最快!

具体的配置,我们在 Redis持久化 中去给大家详细详解!

Redis持久化

面试和工作,持久化都是重点! Redis 是内存数据库,如果不将内存中的数据库状态保存到磁盘,那么一旦服务器进程退出,服务器中 的数据库状态也会消失。所以 Redis 提供了持久化功能!

RDB(Redis DataBase)

什么是RDB

在主从复制中,rdb就是备用了!从机上面!

image.png

在指定的时间间隔内将内存中的数据集快照写入磁盘,也就是行话讲的Snapshot快照,它恢复时是将快照文件直接读到内存里。

Redis会单独创建(fork)一个子进程来进行持久化,会先将数据写入到一个临时文件中,待持久化过程 都结束了,再用这个临时文件替换上次持久化好的文件。整个过程中,主进程是不进行任何IO操作的。 这就确保了极高的性能。如果需要进行大规模数据的恢复,且对于数据恢复的完整性不是非常敏感,那 RDB方式要比AOF方式更加的高效。RDB的缺点是最后一次持久化后的数据可能丢失。我们默认的就是 RDB,一般情况下不需要修改这个配置!

有时候在生产环境我们会将这个文件进行备份!

rdb保存的文件是dump.rdb都是在我们的配置文件中快照中进行配置的!

image.png

触发机制

  1. save的规则满足的情况下,会自动触发rdb规则
  2. 执行 flushall 命令,也会触发我们的rdb规则!
  3. 退出redis,也会产生 rdb 文件!

备份就自动生成一个 dump.rdb

image.png

如果恢复rdb文件!

  1. 只需要将rdb文件放在我们redis启动目录就可以,redis启动的时候会自动检查dump.rdb 恢复其中 的数据!
  2. 查看需要存在的位置
127.0.0.1:6379> config get dir
1) "dir"
2) "/usr/local/bin" # 如果在这个目录下存在 dump.rdb 文件,启动就会自动恢复其中的数据

几乎就他自己默认的配置就够用了,但是我们还是需要去学习!

优点

  • 适合大规模的数据恢复!
  • 对数据的完整性要不高!

缺点:

  • 需要一定的时间间隔进程操作!如果redis意外宕机了,这个最后一次修改数据就没有的了!
  • fork进程的时候,会占用一定的内容空间!!

AOF(Append Only File)

将我们的所有命令都记录下来,history,恢复的时候就把这个文件全部在执行一遍!

是什么

image.png

以日志的形式来记录每个写操作,将Redis执行过的所有指令记录下来(读操作不记录),只许追加文件 但不可以改写文件,redis启动之初会读取该文件重新构建数据,换言之,redis重启的话就根据日志文件 的内容将写指令从前到后执行一次以完成数据的恢复工作

Aof保存的是 appendonly.aof 文件

append

image.png

默认是不开启的,我们需要手动进行配置!我们只需要将 appendonly 改为yes就开启了 aof! 重启,redis 就可以生效了!

如果这个 aof 文件有错位,这时候 redis 是启动不起来的吗,我们需要修复这个aof文件

redis 给我们提供了一个工具 redis-check-aof --fix

image.png

如果文件正常,重启就可以直接恢复了!

image.png

重写规则说明

aof 默认就是文件的无限追加,文件会越来越大!

image.png

如果 aof 文件大于 64m,太大了! fork一个新的进程来将我们的文件进行重写!

优点和缺点!

appendonly no # 默认是不开启aof模式的,默认是使用rdb方式持久化的,在大部分所有的情况下,
rdb完全够用!
appendfilename "appendonly.aof" # 持久化的文件的名字
# appendfsync always # 每次修改都会 sync。消耗性能
appendfsync everysec # 每秒执行一次 sync,可能会丢失这1s的数据!
# appendfsync no # 不执行 sync,这个时候操作系统自己同步数据,速度最快!
# rewrite 重写,

优点:

  • 每一次修改都同步,文件的完整会更加好!
  • 每秒同步一次,可能会丢失一秒的数据
  • 从不同步,效率最高的!

缺点:

  • 相对于数据文件来说,aof远远大于 rdb,修复的速度也比 rdb慢!
  • Aof 运行效率也要比rdb慢,所以我们redis默认的配置就是rdb持久化

扩展:

  1. RDB 持久化方式能够在指定的时间间隔内对你的数据进行快照存储
  2. AOF 持久化方式记录每次对服务器写的操作,当服务器重启的时候会重新执行这些命令来恢复原始 的数据,AOF命令以Redis 协议追加保存每次写的操作到文件末尾,Redis还能对AOF文件进行后台重 写,使得AOF文件的体积不至于过大。
  3. 只做缓存,如果你只希望你的数据在服务器运行的时候存在,你也可以不使用任何持久化
  4. 同时开启两种持久化方式
  • 在这种情况下,当redis重启的时候会优先载入AOF文件来恢复原始的数据,因为在通常情况下AOF 文件保存的数据集要比RDB文件保存的数据集要完整。
  • RDB 的数据不实时,同时使用两者时服务器重启也只会找AOF文件,那要不要只使用AOF呢?作者建议不要,因为RDB更适合用于备份数据库(AOF在不断变化不好备份),快速重启,而且不会有 AOF可能潜在的Bug,留着作为一个万一的手段。

性能建议

  • 因为RDB文件只用作后备用途,建议只在Slave上持久化RDB文件,而且只要15分钟备份一次就够 了,只保留 save 900 1 这条规则。
  • 如果Enable AOF ,好处是在最恶劣情况下也只会丢失不超过两秒数据,启动脚本较简单只load自 己的AOF文件就可以了,代价一是带来了持续的IO,二是AOF rewrite 的最后将 rewrite 过程中产 生的新数据写到新文件造成的阻塞几乎是不可避免的。只要硬盘许可,应该尽量减少AOF rewrite 的频率,AOF重写的基础大小默认值64M太小了,可以设到5G以上,默认超过原大小100%大小重 写可以改到适当的数值。
  • 如果不Enable AOF ,仅靠 Master-Slave Repllcation 实现高可用性也可以,能省掉一大笔IO,也减少了rewrite时带来的系统波动。代价是如果Master/Slave 同时倒掉,会丢失十几分钟的数据, 启动脚本也要比较两个 Master/Slave 中的 RDB文件,载入较新的那个,微博就是这种架构。

Redis发布订阅

Redis 发布订阅(pub/sub)是一种消息通信模式:发送者(pub)发送消息,订阅者(sub)接收消息。微信、 微博、关注系统!

Redis 客户端可以订阅任意数量的频道。

订阅/发布消息图:

第一个:消息发送者, 第二个:频道 第三个:消息订阅者!

image.png

下图展示了频道 channel1 , 以及订阅这个频道的三个客户端 —— client2 、 client5 和 client1 之间的 关系:

image.png

当有新消息通过 PUBLISH 命令发送给频道 channel1 时, 这个消息就会被发送给订阅它的三个客户 端:

image.png

命令

这些命令被广泛用于构建即时通信应用,比如网络聊天室(chatroom)和实时广播、实时提醒等。

image.png

测试

订阅端:

127.0.0.1:6379> SUBSCRIBE kuangshenshuo  # 订阅一个频道 kuangshenshuo Reading messages... (press Ctrl-C to quit) 
1) "subscribe" 
2) "kuangshenshuo"
3) (integer) 1
# 等待读取推送的信息 
1) "message"  # 消息 
2) "kuangshenshuo"  # 那个频道的消息
3) "hello,kuangshen"  # 消息的具体内容

1) "message"
2) "kuangshenshuo"
3) "hello,redis"

发送端:

127.0.0.1:6379> PUBLISH kuangshenshuo "hello,kuangshen"   # 发布者发布消息到频道!
(integer) 1
127.0.0.1:6379> PUBLISH kuangshenshuo "hello,redis"   # 发布者发布消息到频道!
(integer) 1 
127.0.0.1:6379> 

原理

Redis是使用C实现的,通过分析 Redis 源码里的 pubsub.c 文件,了解发布和订阅机制的底层实现,籍 此加深对 Redis 的理解。

Redis 通过 PUBLISH 、SUBSCRIBE 和 PSUBSCRIBE 等命令实现发布和订阅功能。

微信:

通过 SUBSCRIBE 命令订阅某频道后,redis-server里维护了一个字典,字典的键是一个个 频道!, 而字典的值则是一个链表,链表中保存了所有订阅这个channel客户端。SUBSCRIBE 命令的关键, 就是将客户端添加到给定 channel的订阅链表中。

image.png

通过 PUBLISH 命令向订阅者发送消息,redis-server会使用给定的频道作为键,它所维护的 channel 字典中查找记录了订阅这个频道的所有客户端的链表,遍历这表,将消息发布给所有订阅者。

Pub/Sub 从字面上理解就是发布(Publish)与订阅(Subscribe),在Redis中,可以设定对某一个 key值进行消息发布及消息订阅,当一个key值上进行了消息发后,所有订阅它的客户端都会收到相应的消息。这一功能明显的用法就是用作实时消系统,比如普通的即时聊天,群聊等功能。

使用场景:

  1. 实时消息系统!
  2. 事实聊天!(频道当做聊天室,将信息回显给所有人即可!)
  3. 订阅,关注系统都是可以的! 稍微复杂的场景我们就会使用消息中间件MQ()

Redis主从复制

概念

主从复制,是指将一台Redis服务器的数据,复制到其他的Redis服务器。前者称为主节点(Master/Leader),后者称为从节点(Slave/Follower), 数据的复制是单向的!只能由主节点复制到从节点(主节点以写为主、从节点以读为主)。

默认情况下,每台Redis服务器都是主节点,

一个主节点可以有0个或者多个从节点,但每个从节点只能由一个主节点。

主从复制的作用主要包括:

  1. 数据冗余:主从复制实现了数据的热备份,是持久化之外的一种数据冗余的方式。
  2. 故障恢复:当主节点故障时,从节点可以暂时替代主节点提供服务,是一种服务冗余的方式
  3. 负载均衡:在主从复制的基础上,配合读写分离,由主节点进行写操作,从节点进行读操作,分担服务器的负载;尤其是在多读少写的场景下,通过多个从节点分担负载,提高并发量。
  4. 高可用(集群)基石:主从复制还是哨兵和集群能够实施的基础。

一般来说,要将Redis运用于工程项目中,只使用一台Redis是万万不能的(宕机),原因如下:

  1. 从结构上,单个Redis服务器会发生单点故障,并且一台服务器需要处理所有的请求负载,压力较 大;
  2. 从容量上,单个Redis服务器内存容量有限,就算一台Redis服务器内存容量为256G,也不能将所有 内存用作Redis存储内存,一般来说,单台Redis大使用内存不应该超过20G。
  3. 电商网站上的商品,一般都是一次上传,无数次浏览的,说专业点也就是"多读少写"。

对于这种场景,我们可以使如下这种架构:

image.png

主从复制,读写分离!80%的情况下都是在进行读操作!减缓服务器的压力!架构中经常使用! 一主二从!

只要在公司中,主从复制就是必须要使用的,因为在真实的项目中不可能单机使用Redis!

环境配置

只配置从库,不用配置主库!

127.0.0.1:6379> info replication   # 查看当前库的信息 # Replication 
role:master  # 角色  
master connected_slaves:0 #  没有从机
master_replid:b63c90e6c501143759cb0e7f450bd1eb0c70882a
master_replid2:0000000000000000000000000000000000000000
master_repl_offset:0 
second_repl_offset:-1
repl_backlog_active:0 
repl_backlog_size:1048576
repl_backlog_first_byte_offset:0 
repl_backlog_histlen:0

复制3个配置文件,然后修改对应的信息

  1. 端口
  2. pid 名字
  3. log文件名字
  4. dump.rdb 名字

修改完毕之后,启动我们的3个redis服务器,可以通过进程信息查看!

image.png

一主二从

默认情况下,每台Redis服务器都是主节点

我们一般情况下只用配置从就好了!

认老大! 一主 (79)二从(80,81)

127.0.0.1:6380> SLAVEOF 127.0.0.1 6379   #  SLAVEOF host 6379  找谁当自己的老大!
OK
127.0.0.1:6380> c
# Replication
role:slave  # 当前角色是从机
master_host:127.0.0.1   # 可以的看到主机的信息 
master_port:6379 
master_link_status:up 
master_last_io_seconds_ago:3 
master_sync_in_progress:0 
slave_repl_offset:14 
slave_priority:100 
slave_read_only:1 
connected_slaves:0 master_replid:a81be8dd257636b2d3e7a9f595e69d73ff03774e
master_replid2:0000000000000000000000000000000000000000
master_repl_offset:14
second_repl_offset:-1 
repl_backlog_active:1
repl_backlog_size:1048576
repl_backlog_first_byte_offset:1 
repl_backlog_histlen:14

# 在主机中查看!
127.0.0.1:6379> info replication
# Replication 
role:master connected_slaves:1  # 多了从机的配置
slave0:ip=127.0.0.1,port=6380,state=online,offset=42,lag=1    # 多了从机的配置
master_replid:a81be8dd257636b2d3e7a9f595e69d73ff03774e
master_replid2:0000000000000000000000000000000000000000
master_repl_offset:42
second_repl_offset:-1 
repl_backlog_active:1 
repl_backlog_size:1048576
repl_backlog_first_byte_offset:1 
repl_backlog_histlen:42 

如果两个都配置完了,就是有两个从机

image.png

真实的从主配置应该在配置文件中配置,这样的话是永久的,我们这里用的是命令,暂时的!

细节

主机可以写,从机不能写只能读!主机中的所有信息和数据,都会自动从机保存! 主机写: image.png

从机只能读取内容!

image.png

测试:主机断开连接,从机依旧连接到主机的,但是没有写操作,这个时候主机如果回来了,从机依旧可以直接获取到主机写的信息!

如果是使用命令行,来配置的主从,这个时候如果重启了,就会变回主机!只要变为从机,立马就会从主机中获取值!

复制原理

Slave 启动成功连接到 master 后会发送一个sync同步命令

Master 接到命令,启动后台的存盘进程,同时收集所有接收到的用于修改数据集命令,在后台进程执行完毕之后,master将传送整个数据文件到slave,并完成一次完全同步。

全量复制:slave服务在接收到数据库文件数据后,将其存盘并加载到内存中。 - 第一次链接

增量复制:Master 继续将新的所有收集到的修改命令依次传给slave,完成同步

但是只要是重新连接master,一次完全同步(全量复制)将被自动执行! 我们的数据一定可以在从机中看到!

层层链路

上一个M链接下一个 S!

image.png

这时候也可以完成我们的主从复制!

80端口信息,依旧是一个从节点

image-20220119150041920

81端口信息

image-20220119150027072

如果没有老大了,这个时候能不能选择一个老大出来呢? 手动!

谋朝篡位
如果主机断开了连接,我们可以使用 SLAVEOF no one 让自己变成主机!其他的节点就可以手动连接到最新的这个主节点(手动)!如果这个时候老大修复了,那就只能重新连接!

哨兵模式

(自动选举老大的模式)

概述

主从切换技术的方法是:当主服务器宕机后,需要手动把一台从服务器切为主服务器,这就需要人工干预,费事费力,还会造成一段时间内服务不可荐的方式,更多时候,我们优先考虑哨兵模式。Redis从2.8开始正式提供了Sentinel(哨兵) 架构来解决这个问题。

谋朝篡位的自动版,能够后台监控主机是否故障,如果故障了根据投票数自动将从库转换为主库。

哨兵模式是一种特殊的模式,首先Redis提供了哨兵的命令,哨兵是一个独立的进程,作为进程,它会独立运行。其原理是哨兵通过发送命令,等待Redis服务器响应,从而监控运行的多个Redis实例。

image.png

这里的哨兵有两个作用

  • 通过发送命令,让Redis服务器返回监控其运行状态,包括主服务器和从服务器。
  • 当哨兵监测到master宕机,会自动将slave切换成master,然后通过发布订阅模式通知其他的从服 务器,修改配置文件,让它们切换主机。

然而一个哨兵进程对Redis服务器进行监控,可能会出现问题,为此,我们可以使用多个哨兵进行监控。 各个哨兵之间还会进行监控,这样就形成了多哨兵模式。

image.png

假设主服务器宕机,哨兵1先检测到这个结果,系统并不会马上进行failover过程,仅仅是哨兵1主观的认 为主服务器不可用,这个现象成为 主观下线 。当后面的哨兵也检测到主服务器不可用,并且数量达到一 定值时,那么哨兵之间就会进行一次投票,投票的结果由一个哨兵发起,进行failover[故障转移]操作。 切换成功后,就会通过发布订阅模式,让各个哨兵把自己监控的从服务器实现切换主机,这个过程称为 客观下线

测试!

我们目前的状态是 一主二从!

  1. 配置哨兵配置文件 sentinel.conf
# sentinel monitor 被监控的名称  host  port  1

sentinel montitor myredis  127.0.0.1  6379 1 

后面的这个数字1,代表主机挂了,slave投票看让谁接替成为主机,票数最多的,就会成为主机!

  1. 启动哨兵!
[root@kuangshen bin]# redis-sentinel kconfig/sentinel.conf
26607:X 31 Mar 2020 21:13:10.027 # oO0OoO0OoO0Oo Redis is starting oO0OoO0OoO0Oo
26607:X 31 Mar 2020 21:13:10.027 # Redis version=5.0.8, bits=64,
commit=00000000, modified=0, pid=26607, just started
26607:X 31 Mar 2020 21:13:10.027 # Configuration loaded

                _._
            _.-``__ ''-._
        _.-`` `. `_. ''-._       Redis 5.0.8 (00000000/0) 64 bit
    .-`` .-```. ```\/ _.,_ ''-._
    ( ' , .-` | `, )` _.-'|         Running in sentinel mode
    |`-._`-...-` __...-.``-._|'        Port: 26379
    | `-._ `._ / _.-' |             PID: 26607
    `-._ `-._ `-./ _.-' _.-'
    |`-._`-._ `-.__.-' _.-'_.-'|
    | `-._`-._ _.-'_.-' |            http://redis.io
    `-._ `-._`-.__.-'_.-' _.-'
    |`-._`-._ `-.__.-' _.-'_.-'|
    | `-._`-._ _.-'_.-' |
    `-._ `-._`-.__.-'_.-' _.-'

26607:X 31 Mar 2020 21:13:10.029 # WARNING: The TCP backlog setting of 511
cannot be enforced because /proc/sys/net/core/somaxconn is set to the lower value
of 128.
26607:X 31 Mar 2020 21:13:10.031 # Sentinel ID is
4c780da7e22d2aebe3bc20c333746f202ce72996
26607:X 31 Mar 2020 21:13:10.031 # +monitor master myredis 127.0.0.1 6379 quorum
1
26607:X 31 Mar 2020 21:13:10.031 * +slave slave 127.0.0.1:6380 127.0.0.1 6380 @
myredis 127.0.0.1 6379
26607:X 31 Mar 2020 21:13:10.033 * +slave slave 127.0.0.1:6381 127.0.0.1 6381 @
myredis 127.0.0.1 6379

如果Master 节点断开了,这个时候就会从从机中随机选择一个服务器! (这里面有一个投票算法!)

image.png

哨兵日志!

image.png

如果主机此时回来了,只能归并到新的主机下,当做从机,这就是哨兵模式的规则!

哨兵模式的优缺点

优点:

  1. 哨兵集群,基于主从复制模式,所有的主从配置优点,它全有
  2. 主从可以切换,故障可以转移,系统的可用性就会更好
  3. 哨兵模式就是主从模式的升级,手动到自动,更加健壮!

缺点:

  1. Redis 不好在线扩容的,集群容量一旦到达上限,在线扩容就十分麻烦!
  2. 实现哨兵模式的配置其实是很麻烦的,里面有很多选择!

哨兵模式的全部配置!

# Example sentinel.conf

# 哨兵sentinel实例运行的端口 默认26379
port 26379

# 哨兵sentinel的工作目录
dir /tmp

# 哨兵sentinel监控的redis主节点的 ip port

# master-name 可以自己命名的主节点名字 只能由字母A-z、数字0-9 、这三个字符".-_"组成。

# quorum 配置多少个sentinel哨兵统一认为master主节点失联 那么这时客观上认为主节点失联了

# sentinel monitor <master-name> <ip> <redis-port> <quorum>
sentinel monitor mymaster 127.0.0.1 6379 

# 当在Redis实例中开启了requirepass foobared 授权密码 这样所有连接Redis实例的客户端都要提供密码
# 设置哨兵sentinel 连接主从的密码 注意必须为主从设置一样的验证密码
# sentinel auth-pass <master-name> <password>
sentinel auth-pass mymaster MySUPER--secret-0123passw0rd

# 指定多少毫秒之后 主节点没有应答哨兵sentinel 此时 哨兵主观上认为主节点下线 默认30秒
# sentinel down-after-milliseconds <master-name> <milliseconds>
sentinel down-after-milliseconds mymaster 30000

# 这个配置项指定了在发生failover主备切换时最多可以有多少个slave同时对新的master进行 同步,这个数字越小,完成failover所需的时间就越长,但是如果这个数字越大,就意味着越多的slave因为replication而不可用。可以通过将这个值设为 1 来保证每次只有一个slave 处于不能处理命令请求的状态。
# sentinel parallel-syncs <master-name> <numslaves>
sentinel parallel-syncs mymaster 1

# 故障转移的超时时间 failover-timeout 可以用在以下这些方面:
#1. 同一个sentinel对同一个master两次failover之间的间隔时间。
#2. 当一个slave从一个错误的master那里同步数据开始计算时间。直到slave被纠正为向正确的master那里同步数据时。
#3.当想要取消一个正在进行的failover所需要的时间。
#4.当进行failover时,配置所有slaves指向新的master所需的最大时间。不过,即使过了这个超时,
slaves依然会被正确配置为指向master,但是就不按parallel-syncs所配置的规则来了
# 默认三分钟
# sentinel failover-timeout <master-name> <milliseconds>
sentinel failover-timeout mymaster 180000

# SCRIPTS EXECUTION
#配置当某一事件发生时所需要执行的脚本,可以通过脚本来通知管理员,例如当系统运行不正常时发邮件通知
相关人员。
#对于脚本的运行结果有以下规则:
#若脚本执行后返回1,那么该脚本稍后将会被再次执行,重复次数目前默认为10
#若脚本执行后返回2,或者比2更高的一个返回值,脚本将不会重复执行。
#如果脚本在执行过程中由于收到系统中断信号被终止了,则同返回值为1时的行为相同。
#一个脚本的最大执行时间为60s,如果超过这个时间,脚本将会被一个SIGKILL信号终止,之后重新执行。
#通知型脚本:当sentinel有任何警告级别的事件发生时(比如说redis实例的主观失效和客观失效等等),将会去调用这个脚本,这时这个脚本应该通过邮件,SMS等方式去通知系统管理员关于系统不正常运行的信息。调用该脚本时,将传给脚本两个参数,一个是事件的类型,一个是事件的描述。如果sentinel.conf配置文件中配置了这个脚本路径,那么必须保证这个脚本存在于这个路径,并且是可执行的,否则sentinel无法正常启动成功。

#通知脚本
# shell编程
# sentinel notification-script <master-name> <script-path>
sentinel notification-script mymaster /var/redis/notify.sh

# 客户端重新配置主节点参数脚本
# 当一个master由于failover而发生改变时,这个脚本将会被调用,通知相关的客户端关于master地址已经发生改变的信息。
# 以下参数将会在调用脚本时传给脚本:
# <master-name> <role> <state> <from-ip> <from-port> <to-ip> <to-port>
# 目前<state>总是“failover”,
# <role>是“leader”或者“observer”中的一个。
# 参数 from-ip, from-port, to-ip, to-port是用来和旧的master和新的master(即旧的slave)通信的
# 这个脚本应该是通用的,能被多次调用,不是针对性的。
# sentinel client-reconfig-script <master-name> <script-path>
sentinel client-reconfig-script mymaster /var/redis/reconfig.sh # 一般都是由运维来配置!

社会目前程序员饱和(初级和中级)、高级程序员重金难求!(提升自己!)

Redis缓存穿透和雪崩

服务的高可用问题!

在这里我们不会详细的区分析解决方案的底层!

Redis缓存的使用,极大的提升了应用程序的性能和效率,特别是数据查询方面。但同时,它也带来了一 些问题。其中,最要害的问题,就是数据的一致性问题,从严格意义上讲,这个问题无解。如果对数据 的一致性要求很高,那么就不能使用缓存。

另外的一些典型问题就是,缓存穿透、缓存雪崩和缓存击穿。目前,业界也都有比较流行的解决方案。

image.png

缓存穿透(查不到)

概念

缓存穿透的概念很简单,用户想要查询一个数据,发现redis内存数据库没有,也就是缓存没有命中,于是向持久层数据库查询。发现也没有,于是本次查询失败。当用户很多的时候,缓存都没有命中(秒杀!),于是都去请求了持久层数据库。这会给持久层数据库造成很大的压力,这时候就相当于出现了缓存穿透。

解决方案

布隆过滤器

布隆过滤器是一种数据结构,对所有可能查询的参数以hash形式存储,在控制层先进行校验,不符合则丢弃,从而避免了对底层存储系统的查询压力;

image.png

缓存空对象

当存储层不命中后,即使返回的空对象也将其缓存起来,同时会设置一个过期时间,之后再访问这个数 据将会从缓存中获取,保护了后端数据源;

image.png

但是这种方法会存在两个问题:

  1. 如果空值能够被缓存起来,这就意味着缓存需要更多的空间存储更多的键,因为这当中可能会有很多 的空值的键;
  2. 即使对空值设置了过期时间,还是会存在缓存层和存储层的数据会有一段时间窗口的不一致,这对于 需要保持一致性的业务会有影响。

缓存击穿(量太大,缓存过期!)

概述

这里需要注意和缓存击穿的区别,缓存击穿,是指一个key非常热点,在不停的扛着大并发,大并发集中 对这一个点进行访问,当这个key在失效的瞬间,持续的大并发就穿破缓存,直接请求数据库,就像在一 个屏障上凿开了一个洞。

当某个key在过期的瞬间,有大量的请求并发访问,这类数据一般是热点数据,由于缓存过期,会同时访 问数据库来查询最新数据,并且回写缓存,会导使数据库瞬间压力过大。

解决方案

设置热点数据永不过期

从缓存层面来看,没有设置过期时间,所以不会出现热点 key 过期后产生的问题。

加互斥锁

分布式锁:使用分布式锁(setnx),保证对于每个key同时只有一个线程去查询后端服务,其他线程没有获得分布式锁的权限,因此只需要等待即可。这种方式将高并发的压力转移到了分布式锁,因此对分布式锁的考验很大。

image.png

缓存雪崩

概念

缓存雪崩,是指在某一个时间段,缓存集中过期失效。Redis 宕机!

产生雪崩的原因之一,比如在写本文的时候,马上就要到双十二零点,很快就会迎来一波抢购,这波商品时间比较集中的放入了缓存,假设缓存一个小时。那么到了凌晨一点钟的时候,这批商品的缓存就都过期了。而对这批商品的访问查询,都落到了数据库上,对于数据库而言,就会产生周期性的压力波峰。于是所有的请求都会达到存储层,存储层的调用量会暴增,造成存储层也会挂掉的情况。

image.png

其实集中过期,倒不是非常致命,比较致命的缓存雪崩,是缓存服务器某个节点宕机或断网。因为自然 形成的缓存雪崩,一定是在某个时间段集中创建缓存,这个时候,数据库也是可以顶住压力的。无非就 是对数据库产生周期性的压力而已。而缓存服务节点的宕机,对数据库服务器造成的压力是不可预知 的,很有可能瞬间就把数据库压垮。

解决方案

redis高可用 这个思想的含义是,既然redis有可能挂掉,那我多增设几台redis,这样一台挂掉之后其他的还可以继续 工作,其实就是搭建的集群。(异地多活!)

限流降级(在SpringCloud讲解过!)

这个解决方案的思想是,在缓存失效后,通过加锁或者队列来控制读数据库写缓存的线程数量。比如对 某个key只允许一个线程查询数据和写缓存,其他线程等待。

数据预热
数据加热的含义就是在正式部署之前,我先把可能的数据先预先访问一遍,这样部分可能大量访问的数据就会加载到缓存中。在即将发生大并发访问前手动触发加载缓存不同的key,设置不同的过期时间,让缓存失效的时间点尽量均匀。

  大数据 最新文章
实现Kafka至少消费一次
亚马逊云科技:还在苦于ETL?Zero ETL的时代
初探MapReduce
【SpringBoot框架篇】32.基于注解+redis实现
Elasticsearch:如何减少 Elasticsearch 集
Go redis操作
Redis面试题
专题五 Redis高并发场景
基于GBase8s和Calcite的多数据源查询
Redis——底层数据结构原理
上一篇文章      下一篇文章      查看所有文章
加:2022-01-24 10:57:59  更:2022-01-24 10:58:04 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/17 3:14:30-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码