| 
 
 步骤  
-  
开启 kafka 集群    
# 三台节点都要开启 kafka 
[root@node01 kafka]# bin/kafka-server-start.sh -daemon config/server.properties  
? ??2. 使用 kafka tool 连接 kafka 集群,创建 topic  
?  
# 第1种方式通过命令
bin/kafka-topics.sh --create --zookeeper node01:2181,node02:2181,node03:2181 --topic vehicledata --replication-factor 2 --partitions 3
# 查看 kafka topic 的列表
[root@node01 kafka]# bin/kafka-topics.sh --zookeeper node01:2181,node02:2181,node03:2181 --list  
# 第2种 kafka tool 工具  
   
? ?3.通过 flink 将解析后的报文 json 字符串推送到 kafka 中 ?  
package cn.itcast.flink.json.producer;
import org.apache.flink.api.common.restartstrategy.RestartStrategies;
import org.apache.flink.api.java.io.TextInputFormat;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.source.FileProcessingMode;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer;
import org.apache.flink.streaming.connectors.kafka.KafkaSerializationSchema;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import javax.annotation.Nullable;
import java.util.Properties;
/**
 * 主要用于将解析后的报文json字符串写入到 kafka 集群
 * 开发步骤:
 * todo 1.flink创建流执行环境,设置并行度
 * todo 2.设置开启checkpoint
 * todo 3.设置重启策略 不重启
 * todo 4.读取File数据源,初始化 FlinkKafkaProducer及必须配置
 * todo 5.添加数据源
 * todo 6.写入到kafka集群
 * todo 7.执行流环境
 */
public class FlinkKafkaWriter {
    public static void main(String[] args) throws Exception {
        //todo 1.flink创建流执行环境,设置并行度
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        //todo 2.设置开启checkpoint
        env.enableCheckpointing(5000);
        //todo 3.设置重启策略 不重启
        env.setRestartStrategy(RestartStrategies.noRestart());
        //todo 4.读取File数据源,
        DataStreamSource<String> source = env.readFile(
                new TextInputFormat(null),
                "C:\\Users\\69407\\IdeaProjects\\CarNetworkingSystem\\data\\sourcedata.txt",
                FileProcessingMode.PROCESS_CONTINUOUSLY,
                60 * 1000
        );
        //todo 5.初始化 FlinkKafkaProducer及必须配置
        Properties props = new Properties();
        props.setProperty(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "node1:9092,node2:9092,node3:9092");
        props.setProperty(ProducerConfig.BATCH_SIZE_CONFIG, 5 + "");
        FlinkKafkaProducer<String> producer = new FlinkKafkaProducer<>(
                "vehicledata",
                new KafkaSerializationSchema<String>() {
                    @Override
                    public ProducerRecord<byte[], byte[]> serialize(String element, @Nullable Long timestamp) {
                        return new ProducerRecord<byte[], byte[]>(
                                "vehicledata",
                                element.getBytes()
                        );
                    }
                },
                props,
                FlinkKafkaProducer.Semantic.NONE
        );
        //todo 6.写入到kafka集群
        source.addSink(producer);
        //todo 7.执行流环境
        env.execute();
    }
}
 
?  
? 
                
        
        
    
 
 |