IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 大数据 -> K8S学习之EFK集群 -> 正文阅读

[大数据]K8S学习之EFK集群

Kubernetes集群EFK

Elasticsearch是一个实时的,分布式的,可扩展的搜索引擎,它允许进行全文本和结构化搜索以及对日志进行分析。它通常用于索引和搜索大量日志数据,也可以用于搜索许多不同种类的文档。

kibana是Elasticsearch 的功能强大的数据可视化的dashboard(仪表板)。Kibana允许你通过Web界面浏览Elasticsearch日志数据,也可自定义查询条件快速检索出elasticccsearch中的日志数据。

Fluentd是一个流行的开源数据收集器,我们将在 Kubernetes 集群节点上安装 Fluentd,通过获取容器日志文件、过滤和转换日志数据,然后将数据传递到 Elasticsearch 集群,在该集群中对其进行索引和存储。

[root@master ~]# cd efk
[root@master efk]# ls
busybox.tar.gz              fluentd.tar.gz       nfs-client-provisioner.tar.gz
elasticsearch_7_2_0.tar.gz  kibana_7_2_0.tar.gz  nginx.tar.gz
[root@master efk]# for i in `ls`;do docker load -i $i;done

在安装Elasticsearch集群之前,我们先创建一个名称空间,在这个名称空间下安装日志收工具elasticsearch、fluentd、kibana。我们创建一个kube-logging名称空间,将EFK组件安装到该名称空间中。

1.创建kube-logging名称空间

[root@master ~]# vim kube-logging.yaml
kind: Namespace
apiVersion: v1
metadata:
  name: kube-logging
[root@master ~]#kubectl apply -f kube-logging.yaml
[root@master ~]# kubectl get namespaces |grep kube-logging
kube-logging           Active   28s

安装elasticsearch组件

使用3个Elasticsearch Pods可以避免高可用中的多节点群集中发生的“裂脑”的问题。

1.创建一个headless service(无头服务)

在kube-logging名称空间定义了一个名为 elasticsearch 的 Service服务,带有app=elasticsearch标签,当我们将 Elasticsearch StatefulSet 与此服务关联时,服务将返回带有标签app=elasticsearch的 Elasticsearch Pods的DNS A记录,然后设置clusterIP=None,将该服务设置成无头服务。最后,我们分别定义端口9200、9300,分别用于与 REST API 交互,以及用于节点间通信。

[root@master ~]# vim elasticsearch_svc.yaml

kind: Service
apiVersion: v1
metadata:
  name: elasticsearch
  namespace: kube-logging
  labels:
    app: elasticsearch
spec:
  selector:
    app: elasticsearch
  clusterIP: None
  ports:
    - port: 9200
      name: rest
    - port: 9300
      name: inter-node
[root@master ~]# kubectl apply -f elasticsearch_svc.yaml
[root@master ~]# kubectl get svc -nkube-logging
NAME            TYPE        CLUSTER-IP   EXTERNAL-IP   PORT(S)             AGE
elasticsearch   ClusterIP   None         <none>        9200/TCP,9300/TCP   38s

2.通过statefulset创建elasticsearch集群

Kubernetes statefulset可以为Pods分配一个稳定的标识,让pod具有稳定的、持久的存储。 Elasticsearch需要稳定的存储才能通过POD重新调度和重新启动来持久化数据。3个防止脑裂

1)下面将定义一个资源清单文件elasticsearch_statefulset.yaml

apiVersion: apps/v1
kind: StatefulSet
metadata:
  name: es-cluster
  namespace: kube-logging
spec:
  serviceName: elasticsearch
  ##与前面创建的headless服务名相关联,一致
  replicas: 3
  selector:
    matchLabels:
      app: elasticsearch
      ##选择拥有该标签的pod创建副本,与下面的template里定义相关联一致,新版本必写字段
  template:
    metadata:
      labels:
        app: elasticsearch
    spec:
      containers:
      - name: elasticsearch
        image: docker.elastic.co/elasticsearch/elasticsearch:7.2.0
        imagePullPolicy: IfNotPresent
        resources:
            limits:
              cpu: 1000m
            requests:
              cpu: 100m
        ports:
        ##跟上面的headless服务的对应一致
        - containerPort: 9200
          name: rest
          protocol: TCP
        - containerPort: 9300
          name: inter-node
          protocol: TCP
        volumeMounts:
        - name: data
          mountPath: /usr/share/elasticsearch/data
        env:
          - name: cluster.name
            value: k8s-logs
          - name: node.name
            valueFrom:
              fieldRef:
                fieldPath: metadata.name
          - name: discovery.seed_hosts
            value: "es-cluster-0.elasticsearch,es-cluster-1.elasticsearch,es-cluster-2.elasticsearch"
            ###statefulset创建pod有序,默认会生成的pod的名字
          - name: cluster.initial_master_nodes
            value: "es-cluster-0,es-cluster-1,es-cluster-2"
          - name: ES_JAVA_OPTS
            value: "-Xms512m -Xmx512m"

env

cluster.name:Elasticsearch 集群的名称,我们这里是 k8s-logs。
node.name:节点的名称,通过metadata.name来获取。这将解析为 es-cluster-[0,1,2],取决于节点的指定顺序。
discovery.zen.ping.unicast.hosts:此字段用于设置在Elasticsearch集群中节点相互连接的发现方法。我们使用 unicastdiscovery 方式,它为我们的集群指定了一个静态主机列表。由于我们之前配置的无头服务,我们的 Pod 具有唯一的 DNS 域es-cluster-[0,1,2].elasticsearch.kube-logging.svc.cluster.local,因此我们相应地设置此变量。由于都在同一个 namespace 下面,所以我们可以将其缩短为es-cluster-[0,1,2].elasticsearch。要了解有关 Elasticsearch 发现的更多信息,请参阅 Elasticsearch 官方文档:https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-discovery.html。
discovery.zen.minimum_master_nodes:我们将其设置为(N/2) + 1,N是我们的群集中符合主节点的节点的数量。我们有3个 Elasticsearch 节点,因此我们将此值设置为2(向下舍入到最接近的整数)。要了解有关此参数的更多信息,请参阅官方 Elasticsearch 文档:https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-node.html#split-brain。
ES_JAVA_OPTS:这里我们设置为-Xms512m -Xmx512m,告诉JVM使用512 MB的最小和最大堆。您应该根据群集的资源可用性和需求调整这些参数。要了解更多信息,请参阅设置堆大小的相关文档:https://www.elastic.co/guide/en/elasticsearch/reference/current/heap-size.html

. . .
      initContainers:
      - name: fix-permissions
        image: busybox
        command: ["sh", "-c", "chown -R 1000:1000 /usr/share/elasticsearch/data"]
        securityContext:
          privileged: true
        volumeMounts:
        - name: data
          mountPath: /usr/share/elasticsearch/data
      - name: increase-vm-max-map
        image: busybox
        command: ["sysctl", "-w", "vm.max_map_count=262144"]
        securityContext:
          privileged: true
      - name: increase-fd-ulimit
        image: busybox
        command: ["sh", "-c", "ulimit -n 65536"]
        securityContext:
          privileged: true
  volumeClaimTemplates:
  - metadata:
      name: data
      labels:
        app: elasticsearch
    spec:
      accessModes: [ "ReadWriteOnce" ]
      storageClassName: do-block-storage
      resources:
        requests:
          storage: 10Gi

创建storageclass,实现nfs做存储类的动态供给

[root@master ~]# yum install nfs-utils -y
[root@master ~]# cat /etc/exports
/data/v1 192.168.1.0/24(rw,no_root_squash)
[root@master ~]# mkdir /data/v1 -p
[root@master ~]# systemctl start nfs
[root@master ~]# showmount -e
Export list for master:
/data/v1 192.168.1.0/24

创建运行nfs-provisioner的sa账号

[root@master ~]# cat serviceaccount.yaml
apiVersion: v1
kind: ServiceAccount
metadata:
  name: nfs-provisioner
[root@master ~]# kubectl apply -f serviceaccount.yaml
serviceaccount/nfs-provisioner created
[root@master ~]# kubectl get sa
NAME              SECRETS   AGE
nfs-provisioner   1         2s

对sa账号做rbac授权

[root@master ~]# vim rbac.yaml
kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: nfs-provisioner-runner
rules:
  - apiGroups: [""]
    resources: ["persistentvolumes"]
    verbs: ["get", "list", "watch", "create", "delete"]
  - apiGroups: [""]
    resources: ["persistentvolumeclaims"]
    verbs: ["get", "list", "watch", "update"]
  - apiGroups: ["storage.k8s.io"]
    resources: ["storageclasses"]
    verbs: ["get", "list", "watch"]
  - apiGroups: [""]
    resources: ["events"]
    verbs: ["create", "update", "patch"]
  - apiGroups: [""]
    resources: ["services", "endpoints"]
    verbs: ["get"]
  - apiGroups: ["extensions"]
    resources: ["podsecuritypolicies"]
    resourceNames: ["nfs-provisioner"]
    verbs: ["use"]
---
kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: run-nfs-provisioner
subjects:
  - kind: ServiceAccount
    name: nfs-provisioner
    namespace: default
roleRef:
  kind: ClusterRole
  name: nfs-provisioner-runner
  apiGroup: rbac.authorization.k8s.io
---
kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: leader-locking-nfs-provisioner
rules:
  - apiGroups: [""]
    resources: ["endpoints"]
    verbs: ["get", "list", "watch", "create", "update", "patch"]
---
kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: leader-locking-nfs-provisioner
subjects:
  - kind: ServiceAccount
    name: nfs-provisioner
    namespace: default
roleRef:
  kind: Role
  name: leader-locking-nfs-provisioner
  apiGroup: rbac.authorization.k8s.io

[root@master ~]# kubectl apply -f rbac.yaml
clusterrole.rbac.authorization.k8s.io/nfs-provisioner-runner created
clusterrolebinding.rbac.authorization.k8s.io/run-nfs-provisioner created
role.rbac.authorization.k8s.io/leader-locking-nfs-provisioner created
rolebinding.rbac.authorization.k8s.io/leader-locking-nfs-provisioner created

通过deployment创建pod用来运行nfs-provisioner

[root@master ~]# vim deployment.yaml
kind: Deployment
apiVersion: apps/v1
metadata:
  name: nfs-provisioner
spec:
  selector:
    matchLabels:
      app: nfs-provisioner
  replicas: 1
  strategy:
    type: Recreate
  template:
    metadata:
      labels:
        app: nfs-provisioner
    spec:
      serviceAccount: nfs-provisioner
      containers:
        - name: nfs-provisioner
          image: registry.cn-hangzhou.aliyuncs.com/open-ali/nfs-client-provisioner:latest
          imagePullPolicy: IfNotPresent
          volumeMounts:
            - name: nfs-client-root
              mountPath: /persistentvolumes
          env:
            - name: PROVISIONER_NAME
              value: example.com/nfs
            - name: NFS_SERVER
              value: 192.168.1.11
            - name: NFS_PATH
              value: /data/v1
      volumes:
        - name: nfs-client-root
          nfs:
            server: 192.168.1.11
            path: /data/v1
[root@master ~]# kubectl apply -f deployment.yaml
deployment.apps/nfs-provisioner created
[root@master ~]# kubectl get pod
NAME                               READY   STATUS    RESTARTS   AGE
nfs-provisioner-765944b7dc-m4qdp   1/1     Running   0          5s

创建storageclass

[root@master ~]# cat class.yaml
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: do-block-storage
provisioner: example.com/nfs
#该值需要和前面nfs provisioner配置env的PROVISIONER_NAME处的value值保持一致
[root@master ~]# kubectl apply -f class.yaml
storageclass.storage.k8s.io/do-block-storage created
[root@master ~]# kubectl get sc
NAME PROVISIONER   RECLAIMPOLICY  VOLUMEBINDINGMODE  ALLOWVOLUMEEXPANSION   AGE
do-block-storage   example.com/nfs   Delete     Immediate    false    7s

最后,我们指定了每个 PersistentVolume 的大小为 10GB,我们可以根据自己的实际需要进行调整

elasticsaerch-statefulset.yaml资源清单文件内容

apiVersion: apps/v1
kind: StatefulSet
metadata:
  name: es-cluster
  namespace: kube-logging
spec:
  serviceName: elasticsearch
  replicas: 3
  selector:
    matchLabels:
      app: elasticsearch
  template:
    metadata:
      labels:
        app: elasticsearch
    spec:
      containers:
      - name: elasticsearch
        image: docker.elastic.co/elasticsearch/elasticsearch:7.2.0
        imagePullPolicy: IfNotPresent
        resources:
            limits:
              cpu: 1000m
            requests:
              cpu: 100m
        ports:
        - containerPort: 9200
          name: rest
          protocol: TCP
        - containerPort: 9300
          name: inter-node
          protocol: TCP
        volumeMounts:
        - name: data
          mountPath: /usr/share/elasticsearch/data
        env:
          - name: cluster.name
            value: k8s-logs
          - name: node.name
            valueFrom:
              fieldRef:
                fieldPath: metadata.name
          - name: discovery.seed_hosts
            value: "es-cluster-0.elasticsearch,es-cluster-1.elasticsearch,es-cluster-2.elasticsearch"
          - name: cluster.initial_master_nodes
            value: "es-cluster-0,es-cluster-1,es-cluster-2"
          - name: ES_JAVA_OPTS
            value: "-Xms512m -Xmx512m"
      initContainers:
      - name: fix-permissions
        image: busybox
        imagePullPolicy: IfNotPresent
        command: ["sh", "-c", "chown -R 1000:1000 /usr/share/elasticsearch/data"]
        securityContext:
          privileged: true
        volumeMounts:
        - name: data
          mountPath: /usr/share/elasticsearch/data
      - name: increase-vm-max-map
        image: busybox
        imagePullPolicy: IfNotPresent
        command: ["sysctl", "-w", "vm.max_map_count=262144"]
        securityContext:
          privileged: true
      - name: increase-fd-ulimit
        image: busybox
        imagePullPolicy: IfNotPresent
        command: ["sh", "-c", "ulimit -n 65536"]
        securityContext:
          privileged: true
  volumeClaimTemplates:
  - metadata:
      name: data
      labels:
        app: elasticsearch
    spec:
      accessModes: [ "ReadWriteOnce" ]
      storageClassName: do-block-storage
      resources:
        requests:
          storage: 10Gi
[root@master ~]# kubectl apply -f elasticsaerch-statefulset.yaml
statefulset.apps/es-cluster created
[root@master ~]# kubectl get pod -n kube-logging
NAME           READY   STATUS    RESTARTS   AGE
es-cluster-0   1/1     Running   0          35s
es-cluster-1   1/1     Running   0          29s
es-cluster-2   1/1     Running   0          22s
[root@master ~]# kubectl get svc -n kube-logging
NAME            TYPE        CLUSTER-IP   EXTERNAL-IP   PORT(S)             AGE
elasticsearch   ClusterIP   None         <none>     9200/TCP,9300/TCP   4d10h
[root@master ~]# kubectl get pvc -n kube-logging
NAME                STATUS   VOLUME                                     CAPACITY   ACCESS MODES   STORAGECLASS       AGE
data-es-cluster-0   Bound    pvc-4f21cab4-c063-4fdf-9279-9e13bb7c790b   10Gi       RWO            do-block-storage   7m50s
data-es-cluster-1   Bound    pvc-5424af17-6a7f-42bd-833d-fefeb4317299   10Gi       RWO            do-block-storage   7m44s
data-es-cluster-2   Bound    pvc-76b34d19-fb94-44e8-b10c-646ccbd086fe   10Gi       RWO            do-block-storage   7m37s

通过REST API检查elasticsearch集群是否部署成功,使用下面的命令将本地端口9200转发到 Elasticsearch 节点(如es-cluster-0)对应的端口:

[root@master ~]# kubectl port-forward es-cluster-0 9200:9200 --namespace=kube-logging
Forwarding from 127.0.0.1:9200 -> 9200
Forwarding from [::1]:9200 -> 9200
Handling connection for 9200

然后,在另外的终端窗口中,执行如下请求,新开一个master1终端:
curl http://localhost:9200/_cluster/state?pretty 可以看到es-cluster-0-2三个pod的IP信息

[root@master ~]# curl http://localhost:9200/_cluster/state?pretty
{
  "cluster_name" : "k8s-logs",
  "cluster_uuid" : "HUIB_6HDR0OBZ_IjAbEZGA",
  "version" : 17,
  "state_uuid" : "63xm4eeLSbCZw9e7l1hnnQ",
  "master_node" : "9jIRSH-tSCWAZ1_zZj0oMA",
  "blocks" : { },
  "nodes" : {
    "topJCw-URjK0CbiEv_6pyQ" : {
      "name" : "es-cluster-1",
      "ephemeral_id" : "vUyn2opWSI6Xq1VLdRAx-g",
      "transport_address" : "10.244.1.124:9300",
      "attributes" : {
        "ml.machine_memory" : "3953963008",
        "ml.max_open_jobs" : "20",
        "xpack.installed" : "true"
      }
    },
    "L91tH0csQq6_MhQBsOB4Pg" : {
      "name" : "es-cluster-2",
      "ephemeral_id" : "eGUp4fTsSNe8oXCjtu1bPQ",
      "transport_address" : "10.244.1.125:9300",
      "attributes" : {
        "ml.machine_memory" : "3953963008",
        "ml.max_open_jobs" : "20",
        "xpack.installed" : "true"
      }
    },
    "9jIRSH-tSCWAZ1_zZj0oMA" : {
      "name" : "es-cluster-0",
      "ephemeral_id" : "0Pz9qSyWQY28krb7vfe3Og",
      "transport_address" : "10.244.1.123:9300",
      "attributes" : {
        "ml.machine_memory" : "3953963008",
        "xpack.installed" : "true",
        "ml.max_open_jobs" : "20"
      }
    }
  },

安装kibana组件

[root@master ~]# cat kibana.yaml
apiVersion: v1
kind: Service
metadata:
  name: kibana
  namespace: kube-logging
  labels:
    app: kibana
spec:
  ports:
  - port: 5601
  type: NodePort
  selector:
    app: kibana
---
apiVersion: apps/v1
kind: Deployment
metadata:
  name: kibana
  namespace: kube-logging
  labels:
    app: kibana
spec:
  replicas: 1
  selector:
    matchLabels:
      app: kibana
  template:
    metadata:
      labels:
        app: kibana
    spec:
      containers:
      - name: kibana
        image: docker.elastic.co/kibana/kibana:7.2.0
        imagePullPolicy: IfNotPresent
        resources:
          limits:
            cpu: 1000m
          requests:
            cpu: 100m
        env:
          - name: ELASTICSEARCH_URL
            value: http://elasticsearch:9200
        ports:
        - containerPort: 5601
[root@master ~]# kubectl apply -f kibana.yaml
[root@master ~]# kubectl get pods -n kube-logging
NAME                      READY   STATUS    RESTARTS   AGE
kibana-5749b5778b-rclzg   1/1     Running   0          10s
[root@master ~]# kubectl get svc -n kube-logging
NAME      TYPE        CLUSTER-IP       EXTERNAL-IP   PORT(S)             AGE
elasticsearch   ClusterIP   None       <none>        9200/TCP,9300/TCP   4d10h
kibana     NodePort    10.105.166.246   <none>        5601:31324/TCP      22s

浏览器访问:192.168.4.12:31324
在这里插入图片描述

安装fluentd组件

我们使用daemonset控制器部署fluentd组件,这样可以保证集群中的每个节点都可以运行同样fluentd的pod副本,这样就可以收集k8s集群中每个节点的日志,在k8s集群中,容器应用程序的输入输出日志会重定向到node节点里的json文件中,fluentd可以tail和过滤以及把日志转换成指定的格式发送到elasticsearch集群中。除了容器日志,fluentd也可以采集kubelet、kube-proxy、docker的日志。

[root@master ~]# vim fluentd.yaml
apiVersion: v1
kind: ServiceAccount
metadata:
  name: fluentd
  namespace: kube-logging
  labels:
    app: fluentd
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: fluentd
  labels:
    app: fluentd
rules:
- apiGroups:
  - ""
  resources:
  - pods
  - namespaces
  verbs:
  - get
  - list
  - watch
---
kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: fluentd
roleRef:
  kind: ClusterRole
  name: fluentd
  apiGroup: rbac.authorization.k8s.io
subjects:
- kind: ServiceAccount
  name: fluentd
  namespace: kube-logging
---
apiVersion: apps/v1
kind: DaemonSet
metadata:
  name: fluentd
  namespace: kube-logging
  labels:
    app: fluentd
spec:
  selector:
    matchLabels:
      app: fluentd
  template:
    metadata:
      labels:
        app: fluentd
    spec:
      serviceAccount: fluentd
      serviceAccountName: fluentd
      tolerations:
      - key: node-role.kubernetes.io/master
        effect: NoSchedule
      containers:
      - name: fluentd
        image: fluent/fluentd-kubernetes-daemonset:v1.4.2-debian-elasticsearch-1.1
        imagePullPolicy: IfNotPresent
        env:
          - name:  FLUENT_ELASTICSEARCH_HOST
            value: "elasticsearch.kube-logging.svc.cluster.local"
          - name:  FLUENT_ELASTICSEARCH_PORT
            value: "9200"
          - name: FLUENT_ELASTICSEARCH_SCHEME
            value: "http"
          - name: FLUENTD_SYSTEMD_CONF
            value: disable
        resources:
          limits:
            memory: 512Mi
          requests:
            cpu: 100m
            memory: 200Mi
        volumeMounts:
        - name: varlog
          mountPath: /var/log
        - name: varlibdockercontainers
          mountPath: /var/lib/docker/containers
          readOnly: true
      terminationGracePeriodSeconds: 30
      volumes:
      ##定义的两个采集数据的路径
      - name: varlog
        hostPath:
          path: /var/log
      - name: varlibdockercontainers
        hostPath:
          path: /var/lib/docker/containers
[root@master ~]# kubectl apply -f fluentd.yaml
serviceaccount/fluentd created
clusterrole.rbac.authorization.k8s.io/fluentd created
clusterrolebinding.rbac.authorization.k8s.io/fluentd created
daemonset.apps/fluentd created
[root@master ~]# kubectl get pod -n kube-logging -owide
NAME           READY   STATUS    RESTARTS   AGE   IP             NODE     
es-cluster-0      1/1     Running   0          36m   10.244.1.123   node1    
es-cluster-1      1/1     Running   0          36m   10.244.1.124   node1   
es-cluster-2      1/1     Running   0          36m   10.244.1.125   node1    
fluentd-qn2nx     1/1     Running   0          80s   10.244.1.128   node1   
fluentd-vbg4b     1/1     Running   0          80s   10.244.0.38    master   
kibana-5749b5-k   1/1     Running   0          14m   10.244.1.127   node1    

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

自定义的容器日志格式
在这里插入图片描述
日志的搜索

测试容器日志

[root@master ~]# cat pod.yaml
apiVersion: v1
kind: Pod
metadata:
  name: counter
spec:
  containers:
  - name: count
    image: busybox
    imagePullPolicy: IfNotPresent
    args: [/bin/sh, -c,'i=0;while true;do echo"$i:$(date)";i=$((i+1));sleep 1;done']
[root@master ~]# kubectl apply -f pod.yaml
pod/counter created
[root@master ~]# kubectl get pod
NAME                               READY   STATUS    RESTARTS   AGE
counter                            1/1     Running   0          5s

回到kibana上搜索 kubernetes.pod_name: counter

在这里插入图片描述
在这里插入图片描述

  大数据 最新文章
实现Kafka至少消费一次
亚马逊云科技:还在苦于ETL?Zero ETL的时代
初探MapReduce
【SpringBoot框架篇】32.基于注解+redis实现
Elasticsearch:如何减少 Elasticsearch 集
Go redis操作
Redis面试题
专题五 Redis高并发场景
基于GBase8s和Calcite的多数据源查询
Redis——底层数据结构原理
上一篇文章      下一篇文章      查看所有文章
加:2022-01-28 11:59:11  更:2022-01-28 12:00:45 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/17 1:42:28-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码