| |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
-> 大数据 -> 高并发系统设计——数据库连接池化技术 -> 正文阅读 |
|
[大数据]高并发系统设计——数据库连接池化技术 |
摘要如何减少频繁创建数据库连接的性能损耗?一天,公司 CEO 把你叫到会议室,告诉你公司看到了一个新的商业机会,希望你能带领一名兄弟,迅速研发出一套面向某个垂直领域的电商系统。在人手紧张,时间不足的情况下,为了能够完成任务,你毫不犹豫地采用了最简单的架构:前端一台 Web 服务器运行业务代码,后端一台数据库服务器存储业务数据。这个架构图是我们每个人最熟悉的,最简单的架构原型,很多系统在一开始都是长这样的,只是随着业务复杂度的提高,架构做了叠加,然后看起来就越来越复杂了。再说回我们的垂直电商系统,系统一开始上线之后,虽然用户量不大,但运行平稳,你很有成就感,不过 CEO 觉得用户量太少了,所以紧急调动运营同学做了一次全网的流量推广。这一推广很快带来了一大波流量,但这时,系统的访问速度开始变慢。 分析程序的日志之后,你发现系统慢的原因出现在和数据库的交互上。因为你们数据库的调用方式是先获取数据库的连接,然后依靠这条连接从数据库中查询数据,最后关闭连接释放数据库资源。这种调用方式下,每次执行 SQL 都需要重新建立连接,所以你怀疑,是不是频繁地建立数据库连接耗费时间长导致了访问慢的问题。 一、数据库连接测试
?
我用命令抓取了线上 MySQL 建立连接的网络包来做分析,从抓包结果来看,整个 MySQL 的连接过程可以分为两部分: 第一部分是前三个数据包。第一个数据包是客户端向服务端发送的一个“SYN”包,第二个包是服务端回给客户端的“ACK”包以及一个“SYN”包,第三个包是客户端回给服务端的“ACK”包,熟悉 TCP 协议的同学可以看出这是一个 TCP 的三次握手过程。 第二部分是 MySQL 服务端校验客户端密码的过程。其中第一个包是服务端发给客户端要求认证的报文,第二和第三个包是客户端将加密后的密码发送给服务端的包,最后两个包是服务端回给客户端认证 OK 的报文。从图中,你可以看到整个连接过程大概消耗了 4ms(969012-964904)。 那么单条 SQL 执行时间是多少呢?我们统计了一段时间的 SQL 执行时间,发现 SQL 的平均执行时间大概是 1ms,也就是说相比于 SQL 的执行,MySQL 建立连接的过程是比较耗时的。这在请求量小的时候其实影响不大,因为无论是建立连接还是执行 SQL,耗时都是毫秒级别的。可是请求量上来之后,如果按照原来的方式建立一次连接只执行一条 SQL 的话,1s 只能执行 200 次数据库的查询,而数据库建立连接的时间占了其中 4/5。 一番谷歌搜索之后,你发现解决方案也很简单,只要使用连接池将数据库连接预先建立好,这样在使用的时候就不需要频繁地创建连接了。调整之后,你发现 1s 就可以执行 1000 次的数据库查询,查询性能大大的提升了。 二、用连接池预先建立数据库连接其实,在开发过程中我们会用到很多的连接池,像是数据库连接池、HTTP 连接池、Redis 连接池等等。而连接池的管理是连接池设计的核心,我就以数据库连接池为例,来说明一下连接池管理的关键点。 数据库连接池有两个最重要的配置:最小连接数和最大连接数,它们控制着从连接池中获取连接的流程:
这个流程你不用死记,非常简单。你可以停下来想想如果你是连接池的设计者你会怎么设计,有哪些关键点,这个设计思路在我们以后的架构设计中经常会用到。 果不其然,JDK 1.5 中引入的 ThreadPoolExecutor 就是一种线程池的实现,它有两个重要的参数:coreThreadCount 和 maxThreadCount,这两个参数控制着线程池的执行过程。它的执行原理类似上面我们说的按摩椅店的模式,我这里再给你描述下,以加深你的记忆:
这个任务处理流程看似简单,实际上有很多坑,你在使用的时候一定要注意。 首先, JDK 实现的这个线程池优先把任务放入队列暂存起来,而不是创建更多的线程,它比较适用于执行 CPU 密集型的任务,也就是需要执行大量 CPU 运算的任务。这是为什么呢?因为执行 CPU 密集型的任务时 CPU 比较繁忙,因此只需要创建和 CPU 核数相当的线程就好了,多了反而会造成线程上下文切换,降低任务执行效率。所以当当前线程数超过核心线程数时,线程池不会增加线程,而是放在队列里等待核心线程空闲下来。 但是,我们平时开发的 Web 系统通常都有大量的 IO 操作,比方说查询数据库、查询缓存等等。任务在执行 IO 操作的时候 CPU 就空闲了下来,这时如果增加执行任务的线程数而不是把任务暂存在队列中,就可以在单位时间内执行更多的任务,大大提高了任务执行的吞吐量。所以你看 Tomcat 使用的线程池就不是 JDK 原生的线程池,而是做了一些改造,当线程数超过 coreThreadCount 之后会优先创建线程,直到线程数到达 maxThreadCount,这样就比较适合于 Web 系统大量 IO 操作的场景了,你在实际运用过程中也可以参考借鉴。 其次,线程池中使用的队列的堆积量也是我们需要监控的重要指标,对于实时性要求比较高的任务来说,这个指标尤为关键。 我在实际项目中就曾经遇到过任务被丢给线程池之后,长时间都没有被执行的诡异问题。最初,我认为这是代码的 Bug 导致的,后来经过排查发现,是因为线程池的 coreThreadCount 和 maxThreadCount 设置的比较小,导致任务在线程池里面大量的堆积,在调大了这两个参数之后问题就解决了。跳出这个坑之后,我就把重要线程池的队列任务堆积量,作为一个重要的监控指标放到了系统监控大屏上。 最后,如果你使用线程池请一定记住不要使用无界队列(即没有设置固定大小的队列)。也许你会觉得使用了无界队列后,任务就永远不会被丢弃,只要任务对实时性要求不高,反正早晚有消费完的一天。但是,大量的任务堆积会占用大量的内存空间,一旦内存空间被占满就会频繁地触发 Full GC,造成服务不可用,我之前排查过的一次 GC 引起的宕机,起因就是系统中的一个线程池使用了无界队列。 这是一种常见的软件设计思想,叫做池化技术。它的核心思想是空间换时间,期望使用预先创建好的对象来减少频繁创建对象的性能开销,同时还可以对对象进行统一的管理,降低了对象的使用的成本,总之是好处多多。 不过,池化技术也存在一些缺陷,比方说存储池子中的对象肯定需要消耗多余的内存,如果对象没有被频繁使用,就会造成内存上的浪费。再比方说,池子中的对象需要在系统启动的时候就预先创建完成,这在一定程度上增加了系统启动时间。 三、数据库连接总结我模拟了研发垂直电商系统最原始的场景,在遇到数据库查询性能下降的问题时,我们使用数据库连接池解决了频繁创建连接带来的性能问题,后面又使用线程池提升了并行查询数据库的性能。 其实,连接池和线程池你并不陌生,不过你可能对它们的原理和使用方式上还存在困惑或者误区,我在面试时,就发现有很多的同学对线程池的基本使用方式都不了解。借用这节课,我想再次强调的重点是:
博文参考 |
|
|
上一篇文章 下一篇文章 查看所有文章 |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 | -2024/11/24 13:54:11- |
|
网站联系: qq:121756557 email:121756557@qq.com IT数码 |