一)环境准备
1. ES版本:7.12.1
2. SpringBoot版本:2.5.8
<parent>
<artifactId>spring-boot-parent</artifactId>
<groupId>org.springframework.boot</groupId>
<version>2.5.8</version>
</parent>
<properties>
<maven.compiler.source>8</maven.compiler.source>
<maven.compiler.target>8</maven.compiler.target>
</properties>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-elasticsearch</artifactId>
</dependency>
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
</dependency>
</dependencies>
二)ES的基本介绍
1. Elasticsearch 是什么
Elaticsearch,简称为 ES,ES 是一个开源的高扩展的分布式全文搜索引擎,是整个 Elastic Stack 技术栈的核心。它可以近乎实时的存储、检索数据;本身扩展性很好,可以扩展到上百台服务器,处理 PB 级别的数据。 The Elastic Stack, 包括 Elasticsearch、Kibana、Beats 和 Logstash(也称为 ELK Stack)。能够安全可靠地获取任何来源、任何格式的数据,然后实时地对数据进行搜索、分析和可视化。
2. Eelasticsearch的作用
Elasticsearch是一款非常强大的开源搜索引擎,具备非常多强大功能,可以帮助我们从海量数据中快速找到需要的内容。
- 在GitHub搜索代码
- 用于搜索引擎中搜索内容
- 各大电商网站搜索商品
- 打车软件搜索附近的车辆
3. Elasticsearch,Solr和Lucene三者之间的关系
目前市面上流行的搜索引擎软件,主流的就两款:Elasticsearch 和 Solr,这两款都是基于 Lucene 搭建的,可以独立部署启动的搜索引擎服务软件。
Lucene是一个Java语言的搜索引擎类库,是Apache公司的顶级项目,提供了一个简单却强大的应用程式接口,能够做全文索引和搜寻。
Elasticsearch和Solr对比
特征 | Solr/SolrCloud | Elasticsearch |
---|
社区和开发者 | Apache软件基金和社区支持 | 单一商业实体及其员工 | 节点发现 | Apache Zookeeper.在大量项目中成熟且经过实战测试 | Zen内置于Elasticsearch本身,需要专用的主节点才能进行裂脑保护 | 碎片放置 | 本质上是静态,需要手动工作来迁移分片,从Solr 7开始- AutoscalingAPI允许一些动态操作 | 动态,可以根据群集状态按需移动分片 | 高速缓存 | 全局,每个段更改无效 | 每段,更适合动态更改数据 | 分析引擎性能 | 非常适合精确计算的静态数据 | 结果的准确性取决于数据放置 | 全文搜索功能 | 基于Lucene的语言分析,多建议,拼写检查,丰富的高亮显示支持 | 基于Lucene的语言分析,单一建议API实现, 高亮显示重新计算 | DevOps支持 | 尚未完全,但即将到来 | 非常好的API | 非平面数据处理 | 嵌套文档和父子支持 | 嵌套和对象类型的自然支持允许几乎无限的嵌套和父-子支持 | 查询DSL | JSON (有限),XML (有限)或URL参数 | JSON | 机器学习 | 内置-在流聚合之上,专注于逻辑回归和学习排名贡献模块 | 商业功能,专注于异常和异常值以及时间序列数据 |
4. Elasticsearch的索引结构–倒排索引
倒排索引的概念是基于MySQL这样的正向索引而言的。
正向索引
那么什么是正向索引呢?例如给下表(tb_goods)中的id创建索引: 如果是根据id查询,那么直接走索引,查询速度非常快。
但如果是基于title做模糊查询,只能是逐行扫描数据,流程如下:
1)用户搜索数据,条件是title符合"%手机%"
2)逐行获取数据,比如id为1的数据
3)判断数据中的title是否符合用户搜索条件
4)如果符合则放入结果集,不符合则丢弃。回到步骤1
逐行扫描,也就是全表扫描,随着数据量增加,其查询效率也会越来越低。当数据量达到数百万时,就是一场灾难。
倒排索引
倒排索引中有两个非常重要的概念:
- 文档(
Document ):用来搜索的数据,其中的每一条数据就是一个文档。例如一个网页、一个商品信息。 - 词条(
Term ):对文档数据或用户搜索数据,利用某种算法分词,得到的具备含义的词语就是词条。例如:我是中国人,就可以分为:我、是、中国人、中国、国人这样的几个词条
创建倒排索引是对正向索引的一种特殊处理,流程如下:
- 将每一个文档的数据利用算法分词,得到一个个词条
- 创建表,每行数据包括词条、词条所在文档id、位置等信息
- 因为词条唯一性,可以给词条创建索引,例如hash表结构索引
如图: 倒排索引的搜索流程如下(以搜索"华为手机"为例):
1)用户输入条件"华为手机" 进行搜索。
2)对用户输入内容分词,得到词条:华为 、手机 。
3)拿着词条在倒排索引中查找,可以得到包含词条的文档id:1、2、3。
4)拿着文档id到正向索引中查找具体文档。
如图: 虽然要先查询倒排索引,再查询倒排索引,但是无论是词条、还是文档id都建立了索引,查询速度非常快!无需全表扫描。
正向索引和倒排索引比较
正向索引:
- 优点:
- 可以给多个字段创建索引
- 根据索引字段搜索、排序速度非常快
- 缺点:
- 根据非索引字段,或者索引字段中的部分词条查找时,只能全表扫描。
倒排索引:
5. ES中的一些基本概念
elasticsearch中有很多独有的概念,与mysql中略有差别,但也有相似之处。
结点和集群
结点(Node):每个es实例称为一个节点。节点名自动分配,也可以手动配置。
集群(cluster):包含一个或多个启动着es实例的机器群。通常一台机器起一个es实例。同一网络下,集名一样的多个es实例自动组成集群,自动均衡分片等行为。默认集群名为“elasticsearch”。
分片和副本
分片 ( shard ): index数据过大时,将index里面的数据,分为多个shard,分布式的存储在各个服务器上面。可以支持海量数据和高并发,提升性能和吞吐量,充分利用多台机器的cpu。
副本( replica ) : 在分布式环境下,任何一台机器都会随时宕机,如果宕机,index的一个分片没有,导致此index不能搜索。所以,为了保证数据的安全,我们会将每个index的分片经行备份,存储在另外的机器上。保证少数机器宕机es集群仍可以搜索。
能正常提供查询和插入的分片我们叫做主分片(primary shard),其余的我们就管他们叫做备份的分片(replica shard)。
文档和字段
elasticsearch是面向文档(Document) 存储的,可以是数据库中的一条商品数据,一个订单信息。文档数据会被序列化为json格式后存储在elasticsearch中:
而Json文档中往往包含很多的字段(Field),类似于数据库中的列。
索引和映射
索引(Index),就是相同类型的文档的集合。
例如:
- 所有用户文档,就可以组织在一起,称为用户的索引;
- 所有商品的文档,可以组织在一起,称为商品的索引;
- 所有订单的文档,可以组织在一起,称为订单的索引;
因此,我们可以把索引当做是数据库中的表。
数据库的表会有约束信息,用来定义表的结构、字段的名称、类型等信息。因此,索引库中就有映射(mapping),是索引中文档的字段约束信息,类似表的结构约束。
mysql与elasticsearch比较
我们统一的把mysql与elasticsearch的概念做一下对比:
MySQL | Elasticsearch | 说明 |
---|
Table | Index | 索引(index),就是文档的集合,类似数据库的表(table) | Row | Document | 文档(Document),就是一条条的数据,类似数据库中的行(Row),文档都是JSON格式 | Column | Field | 字段(Field),就是JSON文档中的字段,类似数据库中的列(Column) | Schema | Mapping | Mapping(映射)是索引中文档的约束,例如字段类型约束。类似数据库的表结构(Schema) | SQL | DSL | DSL是elasticsearch提供的JSON风格的请求语句,用来操作elasticsearch,实现CRUD |
是不是说,我们学习了elasticsearch就不再需要mysql了呢?
并不是如此,两者各自有自己的擅长支出:
因此在企业中,往往是两者结合使用:
- 对安全性要求较高的写操作,使用mysql实现
- 对查询性能要求较高的搜索需求,使用elasticsearch实现
- 两者再基于某种方式,实现数据的同步,保证一致性
数据同步思路分析
常见的数据同步方案有三种:
1.同步调用
方案一:同步调用 基本步骤如下:
- hotel-demo对外提供接口,用来修改elasticsearch中的数据
- 酒店管理服务在完成数据库操作后,直接调用hotel-demo提供的接口,
2.异步通知
方案二:异步通知
流程如下:
- hotel-admin对mysql数据库数据完成增、删、改后,发送MQ消息
- hotel-demo监听MQ,接收到消息后完成elasticsearch数据修改
3.监听binlog
方案三:监听binlog
流程如下:
- 给mysql开启binlog功能
- mysql完成增、删、改操作都会记录在binlog中
- hotel-demo基于canal监听binlog变化,实时更新elasticsearch中的内容
4.选择
方式一:同步调用
方式二:异步通知
方式三:监听binlog
- 优点:完全解除服务间耦合
- 缺点:开启binlog增加数据库负担、实现复杂度高
三)ES索引的增删改查
索引库就类似数据库表,mapping映射就类似表的结构。我们要向es中存储数据,必须先创建“库”和“表”。
1. mapping映射属性
mapping是对索引库中文档的约束,常见的mapping属性包括:
- type:字段数据类型,常见的简单类型有:
- 字符串:text(可分词的文本)、keyword(精确值,例如:品牌、国家、ip地址)
- 数值:long、integer、short、byte、double、float、
- 布尔:boolean
- 日期:date
- 对象:object
- index:是否创建索引,默认为true
- analyzer:使用哪种分词器
- store:是否将数据进行独立存储,默认为 false
原始的文本会存储在_source 里面,默认情况下其他提取出来的字段都不是独立存储的,是从_source 里面提取出来的。当然你也可以独立的存储某个字段,只要设置"store": true 即可,获取独立存储的字段要比从_source 中解析快得多,但是也会占用更多的空间,所以要根据实际业务需求来设置。 - properties:该字段的子字段
2. 索引库的创建
基本语法:
- 请求方式:PUT
- 请求路径:/索引库名,可以自定义
- 请求参数:mapping映射
格式:
PUT /索引库名称
{
"mappings": {
"properties": {
"字段名":{
"type": "text",
"analyzer": "ik_smart"
},
"字段名2":{
"type": "keyword",
"index": "false"
},
"字段名3":{
"properties": {
"子字段": {
"type": "keyword"
}
}
},
}
}
}
示例:
PUT /xianyu
{
"mappings": {
"properties": {
"info":{
"type": "text",
"analyzer": "ik_smart"
},
"email":{
"type": "keyword",
"index": "falsae"
},
"name":{
"properties": {
"firstName": {
"type": "keyword"
}
}
},
}
}
}
RestAPI基本步骤:
CreateIndexRequest request=new CreateIndexRequest("hotel");
request.source(HotelConstants.MAPPING_TEMPLATE, XContentType.JSON);
client.indices().create(request, RequestOptions.DEFAULT);
1.同步创建:
CreateIndexRequest createIndexRequest = new CreateIndexRequest("itheima_book");
createIndexRequest.settings(Settings.builder().put("number_of_shards", "1").put("number_of_replicas", "0"));
createIndexRequest.mapping(" {\n" +
" \t\"properties\": {\n" +
" \"name\":{\n" +
" \"type\":\"keyword\"\n" +
" },\n" +
" \"description\": {\n" +
" \"type\": \"text\"\n" +
" },\n" +
" \"price\":{\n" +
" \"type\":\"long\"\n" +
" },\n" +
" \"pic\":{\n" +
" \"type\":\"text\",\n" +
" \"index\":false\n" +
" }\n" +
" \t}\n" +
"}", XContentType.JSON);
?```
?```
?```
?```
createIndexRequest.alias(new Alias("itheima_index_new"));
createIndexRequest.setTimeout(TimeValue.timeValueMinutes(2));
createIndexRequest.setMasterTimeout(TimeValue.timeValueMinutes(1));
createIndexRequest.waitForActiveShards(ActiveShardCount.from(2));
createIndexRequest.waitForActiveShards(ActiveShardCount.DEFAULT);
IndicesClient indices = client.indices();
CreateIndexResponse createIndexResponse = indices.create(createIndexRequest, RequestOptions.DEFAULT);
boolean acknowledged = createIndexResponse.isAcknowledged();
boolean shardsAcknowledged = createIndexResponse.isShardsAcknowledged();
System.out.println("!!!!!!!!!!!!!!!!!!!!!!!!!!!" + acknowledged);
System.out.println(shardsAcknowledged);
}
2.异步创建:
CreateIndexRequest createIndexRequest = new CreateIndexRequest("itheima_book2");
createIndexRequest.settings(Settings.builder().put("number_of_shards", "1").put("number_of_replicas", "0"));
createIndexRequest.mapping(" {\n" +
" \t\"properties\": {\n" +
" \"name\":{\n" +
" \"type\":\"keyword\"\n" +
" },\n" +
" \"description\": {\n" +
" \"type\": \"text\"\n" +
" },\n" +
" \"price\":{\n" +
" \"type\":\"long\"\n" +
" },\n" +
" \"pic\":{\n" +
" \"type\":\"text\",\n" +
" \"index\":false\n" +
" }\n" +
" \t}\n" +
"}", XContentType.JSON);
ActionListener<CreateIndexResponse> listener =
new ActionListener<CreateIndexResponse>() {
@Override
public void onResponse(CreateIndexResponse createIndexResponse) {
System.out.println("!!!!!!!!创建索引成功");
System.out.println(createIndexResponse.toString());
}
@Override
public void onFailure(Exception e) {
System.out.println("!!!!!!!!创建索引失败");
e.printStackTrace();
}
};
IndicesClient indices = client.indices();
indices.createAsync(createIndexRequest, RequestOptions.DEFAULT, listener);
try {
Thread.sleep(5000);
} catch (InterruptedException e) {
e.printStackTrace();
}
3.SpringData自动创建
@Document(indexName = "book")
@Data
public class Book {
@Id
private String id;
@Field(type = FieldType.Keyword, analyzer = "ik_max_word",searchAnalyzer= "ik_smart")
private String bookName;
@Field(type = FieldType.Text, analyzer = "ik_max_word",searchAnalyzer= "ik_smart")
private String bookDesc;
@Field(type = FieldType.Double, index = false)
private Double bookPrice;
@Field(type = FieldType.Long, index = false)
private Integer bookNumber;
}
3. 查询索引库
基本语法:
-
请求方式:GET -
请求路径:/索引库名 -
请求参数:无
格式:
GET /索引库名
示例:
GET /xianyu
{
"xianyu"【索引名】: {
"aliases"【别名】: {},
"mappings"【映射】: {},
"settings"【设置】: {
"index"【设置 - 索引】: {
"creation_date"【设置 - 索引 - 创建时间】: "1614265373911",
"number_of_shards"【设置 - 索引 - 主分片数量】: "1",
"number_of_replicas"【设置 - 索引 - 副分片数量】: "1",
"uuid"【设置 - 索引 - 唯一标识】: "eI5wemRERTumxGCc1bAk2A",
"version"【设置 - 索引 - 版本】: {
"created": "7080099"
},
"provided_name"【设置 - 索引 - 名称】: "xianyu"
}
}
}
}
查询所有的索引库
#查询所有的索引库
GET /_cat/indices?v
表头 | 含义 |
---|
health 当前服务器健康状态: | green(集群完整) yellow(单点正常、集群不完整)red(单点不正常) | status | 索引打开、关闭状态 | index | 索引名 | uuid | 索引统一编号 | pri | 主分片数量 | rep | 副本数量 | docs.count | 可用文档数量 | docs.deleted | 文档删除状态(逻辑删除) | store.size | 主分片和副分片整体占空间大小 | pri.store.size | 主分片占空间大小 |
RestAPI
GetIndexRequest request = new GetIndexRequest("hotel");
GetIndexResponse response = client.indices().get(request,
RequestOptions.DEFAULT);
4. 修改索引库
倒排索引结构虽然不复杂,但是一旦数据结构改变(比如改变了分词器),就需要重新创建倒排索引,这简直是灾难。因此索引库一旦创建,无法修改mapping。
虽然无法修改mapping中已有的字段,但是却允许添加新的字段到mapping中,因为不会对倒排索引产生影响。
语法说明:
PUT /索引库名/_mapping
{
"properties": {
"新字段名":{
"type": "integer"
}
}
}
5. 删除索引库
语法:
-
请求方式:DELETE -
请求路径:/索引库名 -
请求参数:无
格式:
DELETE /索引库名
RestAPI:
DeleteIndexRequest request = new DeleteIndexRequest("hotel");
client.indices().delete(request,RequestOptions.DEFAULT);
异步删除
DeleteIndexRequest deleteIndexRequest = new DeleteIndexRequest("itheima_book2");
IndicesClient indices = client.indices();
ActionListener<AcknowledgedResponse> listener =
new ActionListener<AcknowledgedResponse>() {
@Override
public void onResponse(AcknowledgedResponse deleteIndexResponse) {
System.out.println("!!!!!!!!删除索引成功");
System.out.println(deleteIndexResponse.toString());
}
@Override
public void onFailure(Exception e) {
System.out.println("!!!!!!!!删除索引失败");
e.printStackTrace();
}
};
indices.deleteAsync(deleteIndexRequest, RequestOptions.DEFAULT, listener);
try {
Thread.sleep(5000);
} catch (InterruptedException e) {
e.printStackTrace();
}
6. 打开关闭索引库
OpenIndexRequest request = new OpenIndexRequest("itheima_book");
OpenIndexResponse openIndexResponse = client.indices().open(request, RequestOptions.DEFAULT);
boolean acknowledged = openIndexResponse.isAcknowledged();
System.out.println("!!!!!!!!!"+acknowledged);
CloseIndexRequest request = new CloseIndexRequest("index");
AcknowledgedResponse closeIndexResponse = client.indices().close(request, RequestOptions.DEFAULT);
boolean acknowledged = closeIndexResponse.isAcknowledged();
System.out.println("!!!!!!!!!"+acknowledged);
GetIndexRequest request = new GetIndexRequest("itheima_book");
request.local(false);
request.humanReadable(true);
request.includeDefaults(false);
boolean exists = client.indices().exists(request, RequestOptions.DEFAULT);
System.out.println(exists);
四)ES文档的增删改查
1. 创建文档
语法:
POST /索引库名/_doc/文档id
{
"字段1": "值1",
"字段2": "值2",
"字段3": {
"子属性1": "值3",
"子属性2": "值4"
},
}
示例:
POST /xianyu/_doc/1 不加id会随机生成一个id
{
"name":"咸鱼",
"age":23
}
{
"_index" : "xianyu",
"_type" : "_doc",
"_id" : "1",
"_version" : 1,
"result" : "created",
"_shards" : {
"total" : 2,
"successful" : 1,
"failed" : 0
},
"_seq_no" : 0,
"_primary_term" : 1
}
RESTAPI
Hotel hotel = hotelService.getById(61083L);
HotelDoc hotelDoc = new HotelDoc(hotel);
String jsonString = JSON.toJSONString(hotelDoc);
IndexRequest request = new IndexRequest("hotel").id(hotelDoc.getId().toString());
request.source(jsonString, XContentType.JSON);
client.index(request, RequestOptions.DEFAULT);
同步
IndexRequest request=new IndexRequest("test_posts");
request.id("3");
String jsonString="{\n" +
" \"user\":\"tomas J\",\n" +
" \"postDate\":\"2019-07-18\",\n" +
" \"message\":\"trying out es3\"\n" +
"}";
request.source(jsonString, XContentType.JSON);
request.timeout(TimeValue.timeValueSeconds(1));
request.timeout("1s");
IndexResponse indexResponse = client.index(request, RequestOptions.DEFAULT);
异步
String index = indexResponse.getIndex();
String id = indexResponse.getId();
if(indexResponse.getResult()== DocWriteResponse.Result.CREATED){
DocWriteResponse.Result result=indexResponse.getResult();
System.out.println("CREATED:"+result);
}else if(indexResponse.getResult()== DocWriteResponse.Result.UPDATED){
DocWriteResponse.Result result=indexResponse.getResult();
System.out.println("UPDATED:"+result);
}
ReplicationResponse.ShardInfo shardInfo = indexResponse.getShardInfo();
if(shardInfo.getTotal()!=shardInfo.getSuccessful()){
System.out.println("处理成功的分片数少于总分片!");
}
if(shardInfo.getFailed()>0){
for (ReplicationResponse.ShardInfo.Failure failure:shardInfo.getFailures()) {
String reason = failure.reason();
System.out.println(reason);
}
}
}
2. 查询文档
语法:
GET /{索引库名称}/_doc/{id}
GET /xianyu/_doc/1
{
"_index" : "xianyu",
"_type" : "_doc",
"_id" : "1",
"_version" : 1,
"_seq_no" : 0,
"_primary_term" : 1,
"found" : true,
"_source" : {
"name" : "咸鱼",
"age" : 23
}
}
RESTAPI
GetRequest request = new GetRequest("hotel","61083");
GetResponse response = client.get(request, RequestOptions.DEFAULT);
String json = response.getSourceAsString();
HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
GetRequest getRequest = new GetRequest("test_post", "1");
GetResponse getResponse = client.get(getRequest, RequestOptions.DEFAULT);
if (getResponse.isExists()) {
long version = getResponse.getVersion();
String sourceAsString = getResponse.getSourceAsString();
System.out.println(sourceAsString);
byte[] sourceAsBytes = getResponse.getSourceAsBytes();
Map<String, Object> sourceAsMap = getResponse.getSourceAsMap();
System.out.println(sourceAsMap);
}else {
}
}
3. 删除文档
语法:
DELETE /{索引库名称}/_doc/{id}
DELETE /xianyu/_doc/1
{
"_index" : "xianyu",
"_type" : "_doc",
"_id" : "1",
"_version" : 2,
"result" : "deleted",
"_shards" : {
"total" : 2,
"successful" : 1,
"failed" : 0
},
"_seq_no" : 1,
"_primary_term" : 1
}
条件删除文档
POST /xianyu/_delete_by_query
{
"query":{
"match":{
"age":23
}
}
}
RESTAPI
DeleteRequest request = new DeleteRequest("hotel", "61083");
client.delete(request, RequestOptions.DEFAULT);
4. 修改文档
修改有两种方式:
- 全量修改:直接覆盖原来的文档
- 增量修改:修改文档中的部分字段
语法:
PUT /{索引库名}/_doc/文档id
{
"字段1": "值1",
"字段2": "值2",
}
增量修改是只修改指定id匹配的文档中的部分字段。
语法:
POST /{索引库名}/_update/文档id
{
"doc": {
"字段名": "新的值",
}
}
POST /xianyu/_update/1
{
"doc": {
"no":"20183033523"
}
}
{
"_index" : "xianyu",
"_type" : "_doc",
"_id" : "1",
"_version" : 2,
"result" : "updated",
"_shards" : {
"total" : 2,
"successful" : 1,
"failed" : 0
},
"_seq_no" : 3,
"_primary_term" : 1
}
RESTAPI
UpdateRequest request = new UpdateRequest("hotel", "61083");
request.doc(
"price", "952",
"starName", "四钻"
);
client.update(request, RequestOptions.DEFAULT);
1构建请求
UpdateRequest request = new UpdateRequest("test_posts", "3");
Map<String, Object> jsonMap = new HashMap<>();
jsonMap.put("user", "tomas JJ");
request.doc(jsonMap);
request.timeout("1s");
request.retryOnConflict(3);
UpdateResponse updateResponse = client.update(request, RequestOptions.DEFAULT);
updateResponse.getId();
updateResponse.getIndex();
if (updateResponse.getResult() == DocWriteResponse.Result.CREATED) {
DocWriteResponse.Result result = updateResponse.getResult();
System.out.println("CREATED:" + result);
} else if (updateResponse.getResult() == DocWriteResponse.Result.UPDATED) {
DocWriteResponse.Result result = updateResponse.getResult();
System.out.println("UPDATED:" + result);
}else if(updateResponse.getResult() == DocWriteResponse.Result.DELETED){
DocWriteResponse.Result result = updateResponse.getResult();
System.out.println("DELETED:" + result);
}else if (updateResponse.getResult() == DocWriteResponse.Result.NOOP){
DocWriteResponse.Result result = updateResponse.getResult();
System.out.println("NOOP:" + result);
}
5. 批量增删改文档
Bulk 操作解释将文档的增删改查一些列操作,通过一次请求全都做完。减少网络传输次数。
语法:
POST /_bulk
{"action": {"metadata"}}
{"data"}
如下操作,删除5,新增14,修改2。
POST /_bulk
{ "delete": { "_index": "test_index", "_id": "5" }}
{ "create": { "_index": "test_index", "_id": "14" }}
{ "test_field": "test14" }
{ "update": { "_index": "test_index", "_id": "2"} }
{ "doc" : {"test_field" : "bulk test"} }
BulkRequest request = new BulkRequest();
request.add(new UpdateRequest("post","2").doc(XContentType.JSON, "field", "3"));
request.add(new DeleteRequest("post").id("1"));
BulkResponse bulkResponse = client.bulk(request, RequestOptions.DEFAULT);
for (BulkItemResponse itemResponse : bulkResponse) {
DocWriteResponse itemResponseResponse = itemResponse.getResponse();
switch (itemResponse.getOpType()) {
case INDEX:
case CREATE:
IndexResponse indexResponse = (IndexResponse) itemResponseResponse;
indexResponse.getId();
System.out.println(indexResponse.getResult());
break;
case UPDATE:
UpdateResponse updateResponse = (UpdateResponse) itemResponseResponse;
updateResponse.getIndex();
System.out.println(updateResponse.getResult());
break;
case DELETE:
DeleteResponse deleteResponse = (DeleteResponse) itemResponseResponse;
System.out.println(deleteResponse.getResult());
break;
}
}
6. SpringData版增删改查
```java
@Repository
public interface BookRepository extends ElasticsearchRepository<Book,String> {
List<Book> findByBookNameLike(String bookName);
}
五)ES的高级查询
1. DSL查询分类
Elasticsearch提供了基于JSON的DSL(Domain Specific Language)来定义查询。常见的查询类型包括:
-
查询所有:查询出所有数据,一般测试用。例如:match_all -
全文检索(full text)查询:利用分词器对用户输入内容分词,然后去倒排索引库中匹配。例如:
- match_query
- multi_match_query
-
精确查询:根据精确词条值查找数据,一般是查找keyword、数值、日期、boolean等类型字段。例如:
-
地理(geo)查询:根据经纬度查询。例如:
- geo_distance
- geo_bounding_box
-
复合(compound)查询:复合查询可以将上述各种查询条件组合起来,合并查询条件。例如:
查询基本语法:
GET /indexName/_search
{
"query": {
"查询类型": {
"查询条件": "条件值"
}
}
}
2. 查询所有文档
GET /indexName/_search
{
"query": {
"match_all": {
}
}
}
RestAPI
SearchRequest request = new SearchRequest("hotel");
request.source().query(QueryBuilders.matchAllQuery());
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
extractResponse(response);
结果解析:
private void extractResponse(SearchResponse response) {
SearchHits searchHits = response.getHits();
long total = searchHits.getTotalHits().value;
System.out.println("文档总条数为"+total);
SearchHit[] hits = searchHits.getHits();
for (SearchHit hit : hits) {
String json = hit.getSourceAsString();
HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
log.info("酒店数据:{}",hotelDoc);
}
}
3. 全文检索查询
使用场景
全文检索查询的基本流程如下:
- 对用户搜索的内容做分词,得到词条
- 根据词条去倒排索引库中匹配,得到文档id
- 根据文档id找到文档,返回给用户
比较常用的场景包括:
因为是拿着词条去匹配,因此参与搜索的字段也必须是可分词的text类型的字段。
基本语法
常见的全文检索查询包括:
- match查询:单字段查询
- multi_match查询:多字段查询,任意一个字段符合条件就算符合查询条件,搜索字段越多,对查询性能影响越大,因此建议采用copy_to,然后单字段查询的方式。
match查询语法如下:
GET /indexName/_search
{
"query": {
"match": {
"FIELD": "TEXT"
}
}
}
#匹配查询
GET /hotel/_search
{
"query": {
"match": {
"city": "上海"
}
}
}
RestAPI
SearchRequest request = new SearchRequest("hotel");
request.source().query(QueryBuilders.matchQuery("city","上海"));
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
extractResponse(response);
mulit_match语法如下:
GET /indexName/_search
{
"query": {
"multi_match": {
"query": "TEXT",
"fields": ["FIELD1", " FIELD12"]
}
}
}
#多字段匹配查询
注意:多字段匹配性能较低一般涉及到多字段搜索会使用copyto到一个字段进行查询
GET /hotel/_search
{
"query": {
"multi_match": {
"query": "汉庭",
"fields": ["name","business"]
}
}
}
RestAPI
SearchRequest request = new SearchRequest("hotel");
request.source().query(QueryBuilders.multiMatchQuery("汉庭","name","business"));
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
extractResponse(response);
4. 关键字精确查询
精确查询一般是查找keyword、数值、日期、boolean等类型字段。所以不会对搜索条件分词。常见的有:
- term:根据词条精确值查询
- range:根据值的范围查询
- terms:根据多个词条精确查询
term查询
因为精确查询的字段搜是不分词的字段,因此查询的条件也必须是不分词的词条。查询时,用户输入的内容跟自动值完全匹配时才认为符合条件。如果用户输入的内容过多,反而搜索不到数据。
语法说明:
GET /indexName/_search
{
"query": {
"term": {
"FIELD": {
"value": "VALUE"
}
}
}
}
#精确查询
GET /hotel/_search
{
"query": {
"term": {
"brand": {
"value": "汉庭"
}
}
}
}
RestAPI
SearchRequest request = new SearchRequest("hotel");
request.source().query(QueryBuilders.termQuery("city","上海"));
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
extractResponse(response);
range查询
范围查询,一般应用在对数值类型做范围过滤的时候。比如做价格范围过滤。 基本语法:
GET /indexName/_search
{
"query": {
"range": {
"FIELD": {
"gte": 10,
"lte": 20
}
}
}
}
#范围查询
GET /hotel/_search
{
"query": {
"range": {
"price": {
"gte": 300,
"lte": 400
}
}
}
}
RestAPI
SearchRequest request = new SearchRequest("hotel");
request.source().query(QueryBuilders.rangeQuery("price").gt(200).lt(400));
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
extractResponse(response);
terms查询
terms 查询和 term 查询一样,但它允许你指定多值进行匹配。如果这个字段包含了指定值中的任何一个值,那么这个文档满足条件,类似于 mysql 的 in。
GET /indexName/_search
{
"query": {
"term": {
"FIELD": {
"value": ["VALUE1","VALUE2"]
}
}
}
}
GET /hotel/_search
{
"query": {
"terms": {
"city": [
"上海",
"北京"
]
}
}
}
RestAPI
SearchRequest request = new SearchRequest("hotel");
request.source().query(QueryBuilders.termsQuery("city","北京","上海"));
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
extractResponse(response);
exist query 查询有某些字段值的文档
GET /_search
{
"query": {
"exists": {
"field": "join_date"
}
}
}
5. 指定查询字段
默认情况下,Elasticsearch 在搜索的结果中,会把文档中保存在_source 的所有字段都返回。如果我们只想获取其中的部分字段,我们可以添加_source 的过滤。
#指定筛选字段
GET /hotel/_search
{
"_source": ["address","city"] ,
"query": {
"term": {
"city": {
"value": "上海"
}
}
}
}
- includes:来指定想要显示的字段
- excludes:来指定不想要显示的字段
GET /hotel/_search
{
"_source": {
"includes": ["brand","price"]
},
"query": {
"term": {
"city": {
"value": "上海"
}
}
}
}
RestAPI
SearchRequest request = new SearchRequest("hotel");
String[] includes={};
String[] excludes={"brand","location"};
request.source().query(QueryBuilders.termQuery("city","上海")).fetchSource(includes,excludes);
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
extractResponse(response);
6. 地理坐标查询
所谓的地理坐标查询,其实就是根据经纬度查询。
常见的使用场景包括:
- 携程:搜索我附近的酒店
- 滴滴:搜索我附近的出租车
- 微信:搜索我附近的人
矩形范围查询
矩形范围查询,也就是geo_bounding_box查询,查询坐标落在某个矩形范围的所有文档: 查询时,需要指定矩形的左上、右下两个点的坐标,然后画出一个矩形,落在该矩形内的都是符合条件的点。
语法如下:
GET /indexName/_search
{
"query": {
"geo_bounding_box": {
"FIELD": {
"top_left": {
"lat": 31.1,
"lon": 121.5
},
"bottom_right": {
"lat": 30.9,
"lon": 121.7
}
}
}
}
}
附近查询
附近查询,也叫做距离查询(geo_distance):查询到指定中心点小于某个距离值的所有文档。
换句话来说,在地图上找一个点作为圆心,以指定距离为半径,画一个圆,落在圆内的坐标都算符合条件: 语法说明:
GET /indexName/_search
{
"query": {
"geo_distance": {
"distance": "15km",
"FIELD": "31.21,121.5"
}
}
}
#地理坐标查询 半径5km范围内的
GET /hotel/_search
{
"query": {
"geo_distance": {
"distance": "5km",
"location": "31.21,121.5"
}
}
}
RestAPI
SearchRequest request = new SearchRequest("hotel");
request.source().query(QueryBuilders
.geoDistanceQuery("location")
.distance("5", DistanceUnit.KILOMETERS)
.point(31.21,121.5));
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
extractResponse(response);
7. 算分函数查询
复合(compound)查询:复合查询可以将其它简单查询组合起来,实现更复杂的搜索逻辑。常见的有两种:
- fuction score:算分函数查询,可以控制文档相关性算分,控制文档排名
- bool query:布尔查询,利用逻辑关系组合多个其它的查询,实现复杂搜索
相关性算分
当我们利用match查询时,文档结果会根据与搜索词条的关联度打分(_score),返回结果时按照分值降序排列。
例如,我们搜索 “虹桥如家”,结果如下:
[
{
"_score" : 17.850193,
"_source" : {
"name" : "虹桥如家酒店真不错",
}
},
{
"_score" : 12.259849,
"_source" : {
"name" : "外滩如家酒店真不错",
}
},
{
"_score" : 11.91091,
"_source" : {
"name" : "迪士尼如家酒店真不错",
}
}
]
在elasticsearch中,早期使用的打分算法是TF-IDF算法,公式如下: 在后来的5.1版本升级中,elasticsearch将算法改进为BM25算法,公式如下: TF-IDF算法有一各缺陷,就是词条频率越高,文档得分也会越高,单个词条对文档影响较大。而BM25则会让单个词条的算分有一个上限,曲线更加平滑: 算分函数查询
根据相关度打分是比较合理的需求,但合理的不一定是产品经理需要的。
以百度为例,你搜索的结果中,并不是相关度越高排名越靠前,而是谁掏的钱多排名就越靠前。
要想认为控制相关性算分,就需要利用elasticsearch中的function score 查询了。
1)语法说明 function score 查询中包含四部分内容:
- 原始查询条件:query部分,基于这个条件搜索文档,并且基于BM25算法给文档打分,原始算分(query score)
- 过滤条件:filter部分,符合该条件的文档才会重新算分
- 算分函数:符合filter条件的文档要根据这个函数做运算,得到的函数算分(function score),有四种函数
- weight:函数结果是常量
- field_value_factor:以文档中的某个字段值作为函数结果
- random_score:以随机数作为函数结果
- script_score:自定义算分函数算法
- 运算模式:算分函数的结果、原始查询的相关性算分,两者之间的运算方式,包括:
- multiply:相乘
- replace:用function score替换query score
- 其它,例如:sum、avg、max、min
function score的运行流程如下:
- 1)根据原始条件查询搜索文档,并且计算相关性算分,称为原始算分(query score)
- 2)根据过滤条件,过滤文档
- 3)符合过滤条件的文档,基于算分函数运算,得到函数算分(function score)
- 4)将原始算分(query score)和函数算分(function score)基于运算模式做运算,得到最终结果,作为相关性算分。
因此,其中的关键点是:
- 过滤条件:决定哪些文档的算分被修改
- 算分函数:决定函数算分的算法
- 运算模式:决定最终算分结果
GET /hotel/_search
{
"query": {
"function_score": {
"query": { .... },
"functions": [
{
"filter": {
"term": {
"brand": "如家"
}
},
"weight": 2
}
],
"boost_mode": "sum"
}
}
}
RestAPI
8. 模糊查询
返回包含与搜索字词相似的字词的文档。
IDs
GET /book/_search
{
"query": {
"ids" : {
"values" : ["1", "4", "100"]
}
}
}
RestAPI
SearchRequest searchRequest = new SearchRequest("book");
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
searchSourceBuilder.query(QueryBuilders.idsQuery().addIds("1","4","100"));
searchRequest.source(searchSourceBuilder);
SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
SearchHits hits = searchResponse.getHits();
prefix 前缀查询
GET /book/_search
{
"query": {
"prefix": {
"description": {
"value": "spring"
}
}
}
}
regexp query 正则查询
GET /book/_search
{
"query": {
"regexp": {
"description": {
"value": "j.*a",
"flags" : "ALL",
"max_determinized_states": 10000,
"rewrite": "constant_score"
}
}
}
}
Fuzzy query
GET /hotel/_search
{
"query": {
"fuzzy": {
"name": {
"value": "酒店",
"fuzziness": 0.8
}
}
}
}
RestAPI
SearchRequest request = new SearchRequest("hotel");
request.source().query(QueryBuilders.fuzzyQuery("name","酒店").fuzziness(Fuzziness.AUTO));
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
extractResponse(response);
9. 复合查询
布尔查询是一个或多个查询子句的组合,每一个子句就是一个子查询。子查询的组合方式有:
- must:必须匹配每个子查询,类似“与”
- should:选择性匹配子查询,类似“或”
- must_not:必须不匹配,不参与算分,类似“非”
- filter:必须匹配,不参与算分
比如在搜索酒店时,除了关键字搜索外,我们还可能根据品牌、价格、城市等字段做过滤: 每一个不同的字段,其查询的条件、方式都不一样,必须是多个不同的查询,而要组合这些查询,就必须用bool查询了。
需要注意的是,搜索时,参与打分的字段越多,查询的性能也越差。因此这种多条件查询时,建议这样做:
- 搜索框的关键字搜索,是全文检索查询,使用must查询,参与算分
- 其它过滤条件,采用filter查询。不参与算分
语法所示:
GET /hotel/_search
{
"query": {
"bool": {
"must": [
{"term": {"city": "上海" }}
],
"should": [
{"term": {"brand": "皇冠假日" }},
{"term": {"brand": "华美达" }}
],
"must_not": [
{ "range": { "price": { "lte": 500 } }}
],
"filter": [
{ "range": {"score": { "gte": 45 } }}
]
}
}
}
RestAPI
SearchRequest request = new SearchRequest("hotel");
BoolQueryBuilder boolQuery = QueryBuilders.boolQuery();
boolQuery.filter(QueryBuilders.rangeQuery("score").gte(45));
boolQuery.must(QueryBuilders.termQuery("city","上海"));
boolQuery.should(QueryBuilders.termQuery("brand","华美达"));
boolQuery.should(QueryBuilders.termQuery("brand","皇冠假日"));
boolQuery.mustNot(QueryBuilders.rangeQuery("price").lte(500));
request.source().query(boolQuery);
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
extractResponse(response);
2)示例
需求:搜索名字包含“如家”,价格不高于400,在坐标31.21,121.5周围10km范围内的酒店。
分析:
- 名称搜索,属于全文检索查询,应该参与算分。放到must中
- 价格不高于400,用range查询,属于过滤条件,不参与算分。放到must_not中
- 周围10km范围内,用geo_distance查询,属于过滤条件,不参与算分。放到filter中
# 复合查询
GET /hotel/_search
{
"query": {
"bool": {
"must": [
{
"term": {
"brand": {
"value": "如家"
}
}
}
],
"must_not": [
{
"range": {
"price": {
"gt": 400
}
}
}
],
"filter": [
{
"geo_distance": {
"distance": "10km",
"location": {
"lat": 31.21,
"lon": 121.5
}
}
}
]
}
}
}
RestAPI
SearchRequest request = new SearchRequest("hotel");
BoolQueryBuilder boolQuery = QueryBuilders.boolQuery();
boolQuery.filter(QueryBuilders
.geoDistanceQuery("location")
.distance(10,DistanceUnit.KILOMETERS)
.point(31.21,121.5));
boolQuery.must(QueryBuilders.termQuery("brand","如家"));
boolQuery.mustNot(QueryBuilders.rangeQuery("price").gt(500));
request.source().query(boolQuery);
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
extractResponse(response);
filter与query对比
filter:仅仅只是按照搜索条件过滤出需要的数据而已,不计算任何相关度分数,对相关度没有任何影响。
query:会去计算每个document相对于搜索条件的相关度,并按照相关度进行排序。
应用场景:
一般来说,如果你是在进行搜索,需要将最匹配搜索条件的数据先返回,那么用query 如果你只是要根据一些条件筛选出一部分数据,不关注其排序,那么用filter
filter与query性能
filter,不需要计算相关度分数,不需要按照相关度分数进行排序,同时还有内置的自动cache最常使用filter的数据
query,相反,要计算相关度分数,按照分数进行排序,而且无法cache结果
10. 排序
elasticsearch默认是根据相关度算分(_score)来排序,但是也支持自定义方式对搜索结果排序。可以排序字段类型有:keyword类型、数值类型、地理坐标类型、日期类型等。
1.普通单字段排序
keyword、数值、日期类型排序的语法基本一致。
{
"query": {
...条件
},
"sort": [{
"FIELD": {
"order":"desc"
}
}]
}
2.普通多字段排序
GET /hotel/_search
{
"query": {
"match_all": {
}
},
"sort": [
{
"price": {
"order": "asc"
},
"score": {
"order": "asc"
}
}
]
}
RestAPI
SearchRequest request = new SearchRequest("hotel");
request.source()
.query(QueryBuilders.matchAllQuery())
.sort("price",SortOrder.ASC)
.sort("score",SortOrder.ASC);
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
extractResponse(response);
3.地理坐标排序
语法说明:
GET /indexName/_search
{
"query": {
"match_all": {}
},
"sort": [
{
"_geo_distance" : {
"FIELD" : "纬度,经度",
"order" : "asc",
"unit" : "km"
}
}
]
}
这个查询的含义是:
- 指定一个坐标,作为目标点
- 计算每一个文档中,指定字段(必须是geo_point类型)的坐标 到目标点的距离是多少
- 根据距离排序
示例: 需求描述:实现对酒店数据按照到你的位置坐标的距离升序排序 RestAPI
SearchRequest request = new SearchRequest("hotel");
request.source()
.query(QueryBuilders.matchAllQuery())
.sort(SortBuilders
.geoDistanceSort("location",31.5,121.5)
.order(SortOrder.ASC)
.unit(DistanceUnit.KILOMETERS));
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
extractResponse(response);
11. 分页
elasticsearch 默认情况下只返回top10的数据。而如果要查询更多数据就需要修改分页参数了。elasticsearch中通过修改from、size参数来控制要返回的分页结果:
- from:从第几个文档开始,默认从 0 开始。 from = (pageNum - 1) * size
- size:总共查询几个文档
类似于mysql中的limit ?, ?
基本分页语法:
GET /hotel/_search
{
"query": {
"match_all": {}
},
"from": 0,
"size": 10,
"sort": [
{"price": "asc"}
]
}
RestAPI
SearchRequest request = new SearchRequest("hotel");
request.source().query(QueryBuilders
.matchAllQuery())
.sort("price",SortOrder.ASC)
.from(0)
.size(10);
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
extractResponse(response);
深度分页问题
现在,我要查询990~1000的数据,查询逻辑要这么写:
GET /hotel/_search
{
"query": {
"match_all": {}
},
"from": 990,
"size": 10,
"sort": [
{"price": "asc"}
]
}
这里是查询990开始的数据,也就是 第990~第1000条 数据。
不过,elasticsearch内部分页时,必须先查询 0~1000条,然后截取其中的990 ~ 1000的这10条: 查询TOP1000,如果es是单点模式,这并无太大影响。
但是elasticsearch将来一定是集群,例如我集群有5个节点,我要查询TOP1000的数据,并不是每个节点查询200条就可以了。
因为节点A的TOP200,在另一个节点可能排到10000名以外了。
因此要想获取整个集群的TOP1000,必须先查询出每个节点的TOP1000,汇总结果后,重新排名,重新截取TOP1000。 当查询分页深度较大时,汇总数据过多,对内存和CPU会产生非常大的压力,因此elasticsearch会禁止from+ size 超过10000的请求。
针对深度分页,ES提供了两种解决方案,官方文档:
- search after:分页时需要排序,原理是从上一次的排序值开始,查询下一页数据。官方推荐使用的方式。
- scroll:原理将排序后的文档id形成快照,保存在内存。官方已经不推荐使用。
分页查询的常见实现方案以及优缺点:
-
from + size :
- 优点:支持随机翻页
- 缺点:深度分页问题,默认查询上限(from + size)是10000
- 场景:百度、京东、谷歌、淘宝这样的随机翻页搜索
-
after search :
- 优点:没有查询上限(单次查询的size不超过10000)
- 缺点:只能向后逐页查询,不支持随机翻页
- 场景:没有随机翻页需求的搜索,例如手机向下滚动翻页
-
scroll :
- 优点:没有查询上限(单次查询的size不超过10000)
- 缺点:会有额外内存消耗,并且搜索结果是非实时的
- 场景:海量数据的获取和迁移。从ES7.1开始不推荐,建议用 after search方案。
12. 高亮查询
高亮原理
什么是高亮显示呢?
我们在百度,京东搜索时,关键字会变成红色,比较醒目,这叫高亮显示: 高亮显示的实现分为两步:
- 1)给文档中的所有关键字都添加一个标签,例如
<em> 标签 - 2)页面给
<em> 标签编写CSS样式
实现高亮
高亮的语法:
GET /hotel/_search
{
"query": {
"match": {
"FIELD": "TEXT"
}
},
"highlight": {
"fields": {
"FIELD": {
"pre_tags": "<em>",
"post_tags": "</em>"
}
}
}
}
注意:
- 高亮是对关键字高亮,因此搜索条件必须带有关键字,而不能是范围这样的查询。
- 默认情况下,高亮的字段,必须与搜索指定的字段一致,否则无法高亮
- 如果要对非搜索字段高亮,则需要添加一个属性:required_field_match=false
ResAPI
SearchRequest request = new SearchRequest("hotel");
request.source().query(QueryBuilders.matchQuery("all", "如家"));
request.source().highlighter(new HighlightBuilder().field("name").requireFieldMatch(false));
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
SearchHits searchHits = response.getHits();
long total = searchHits.getTotalHits().value;
System.out.println("共搜索到" + total + "条数据");
SearchHit[] hits = searchHits.getHits();
for (SearchHit hit : hits) {
String json = hit.getSourceAsString();
HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
Map<String, HighlightField> highlightFields = hit.getHighlightFields();
if (!CollectionUtils.isEmpty(highlightFields)) {
HighlightField highlightField = highlightFields.get("name");
if (highlightField != null) {
String name = highlightField.getFragments()[0].string();
hotelDoc.setName(name);
}
}
System.out.println("hotelDoc = " + hotelDoc);
}
13. 聚合查询
聚合(aggregations)可以让我们极其方便的实现对数据的统计、分析、运算。例如:
- 什么品牌的手机最受欢迎?
- 这些手机的平均价格、最高价格、最低价格?
- 这些手机每月的销售情况如何?
实现这些统计功能的比数据库的sql要方便的多,而且查询速度非常快,可以实现近实时搜索效果。
聚合的种类
聚合常见的有三类:
-
桶(Bucket)聚合:用来对文档做分组 -
TermAggregation:按照文档字段值分组,例如按照品牌值分组、按照国家分组 -
Date Histogram:按照日期阶梯分组,例如一周为一组,或者一月为一组 -
度量(Metric)聚合:用以计算一些值,比如:最大值、最小值、平均值等
- Avg:求平均值
- Max:求最大值
- Min:求最小值
- Stats:同时求max、min、avg、sum等
-
管道(pipeline)聚合:其它聚合的结果为基础做聚合
Bucket聚合语法如下:
GET /hotel/_search
{
"size": 0,
"aggs": {
"brandAgg": {
"terms": {
"field": "brand",
"size": 20
}
}
}
}
结果: RestAPI
SearchRequest request = new SearchRequest("hotel");
request.source().aggregation(AggregationBuilders
.terms("brand_agg")
.field("brand")
.size(20)).size(0);
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
Aggregations aggregations = response.getAggregations();
Terms brand_agg = aggregations.get("brand_agg");
List<? extends Terms.Bucket> buckets = brand_agg.getBuckets();
for (Terms.Bucket bucket : buckets) {
System.out.println(bucket.getKeyAsString());
}
聚合结果排序
默认情况下,Bucket聚合会统计Bucket内的文档数量,记为_count,并且按照_count降序排序。
我们可以指定order属性,自定义聚合的排序方式:
GET /hotel/_search
{
"size": 0,
"aggs": {
"brandAgg": {
"terms": {
"field": "brand",
"order": {
"_count": "asc"
},
"size": 20
}
}
}
}
SearchRequest request = new SearchRequest("hotel");
request.source().aggregation(AggregationBuilders
.terms("brand_agg")
.field("brand")
.size(20)).size(0)
.sort("_count",SortOrder.ASC);
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
限定聚合范围
默认情况下,Bucket聚合是对索引库的所有文档做聚合,但真实场景下,用户会输入搜索条件,因此聚合必须是对搜索结果聚合。那么聚合必须添加限定条件。
我们可以限定要聚合的文档范围,只要添加query条件即可:
GET /hotel/_search
{
"query": {
"range": {
"price": {
"lte": 200
}
}
},
"size": 0,
"aggs": {
"brandAgg": {
"terms": {
"field": "brand",
"size": 20
}
}
}
}
RestAPI
SearchRequest request = new SearchRequest("hotel");
request.source().query(QueryBuilders.rangeQuery("price").lte(200));
request.source()
.aggregation(AggregationBuilders
.terms("brand_agg")
.field("brand")
.size(20)).size(0);
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
Aggregations aggregations = response.getAggregations();
Terms brand_agg = aggregations.get("brand_agg");
List<? extends Terms.Bucket> buckets = brand_agg.getBuckets();
for (Terms.Bucket bucket : buckets) {
System.out.println(bucket.getKeyAsString());
}
Metric聚合语法
我们对酒店按照品牌分组,形成了一个个桶。现在我们需要对桶内的酒店做运算,获取每个品牌的用户评分的min、max、avg等值。
这就要用到Metric聚合了,例如stat聚合:就可以获取min、max、avg等结果。
语法如下:
GET /hotel/_search
{
"size": 0,
"aggs": {
"brandAgg": {
"terms": {
"field": "brand",
"size": 20
},
"aggs": {
"score_stats": {
"stats": {
"field": "score"
}
}
}
}
}
}
这次的score_stats聚合是在brandAgg的聚合内部嵌套的子聚合。因为我们需要在每个桶分别计算。
另外,我们还可以给聚合结果做个排序,例如按照每个桶的酒店平均分做排序: RestAPI
SearchRequest request = new SearchRequest("hotel");
request.source().aggregation(AggregationBuilders
.terms("brand_agg")
.field("brand")
.subAggregation(AggregationBuilders.stats("score_stats").field("score"))
.size(20))
.size(0);
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
Aggregations aggregations = response.getAggregations();
Terms brand_agg = aggregations.get("brand_agg");
List<? extends Terms.Bucket> buckets = brand_agg.getBuckets();
for (Terms.Bucket bucket : buckets) {
System.out.println(bucket.getKeyAsString());
}
六) 聚合案例
电视案例
创建索引及映射
PUT /tvs
PUT /tvs/_search
{
"properties": {
"price": {
"type": "long"
},
"color": {
"type": "keyword"
},
"brand": {
"type": "keyword"
},
"sold_date": {
"type": "date"
}
}
}
插入数据
POST /tvs/_bulk
{ "index": {}}
{ "price" : 1000, "color" : "红色", "brand" : "长虹", "sold_date" : "2019-10-28" }
{ "index": {}}
{ "price" : 2000, "color" : "红色", "brand" : "长虹", "sold_date" : "2019-11-05" }
{ "index": {}}
{ "price" : 3000, "color" : "绿色", "brand" : "小米", "sold_date" : "2019-05-18" }
{ "index": {}}
{ "price" : 1500, "color" : "蓝色", "brand" : "TCL", "sold_date" : "2019-07-02" }
{ "index": {}}
{ "price" : 1200, "color" : "绿色", "brand" : "TCL", "sold_date" : "2019-08-19" }
{ "index": {}}
{ "price" : 2000, "color" : "红色", "brand" : "长虹", "sold_date" : "2019-11-05" }
{ "index": {}}
{ "price" : 8000, "color" : "红色", "brand" : "三星", "sold_date" : "2020-01-01" }
{ "index": {}}
{ "price" : 2500, "color" : "蓝色", "brand" : "小米", "sold_date" : "2020-02-12" }
需求1 统计哪种颜色的电视销量最高
GET /tvs/_search
{
"size" : 0,
"aggs" : {
"popular_colors" : {
"terms" : {
"field" : "color"
}
}
}
}
查询条件解析
size:只获取聚合结果,而不要执行聚合的原始数据 aggs:固定语法,要对一份数据执行分组聚合操作 popular_colors:就是对每个aggs,都要起一个名字, terms:根据字段的值进行分组 field:根据指定的字段的值进行分组
返回
{
"took" : 18,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 8,
"relation" : "eq"
},
"max_score" : null,
"hits" : [ ]
},
"aggregations" : {
"popular_colors" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : "红色",
"doc_count" : 4
},
{
"key" : "绿色",
"doc_count" : 2
},
{
"key" : "蓝色",
"doc_count" : 2
}
]
}
}
}
返回结果解析
hits.hits:我们指定了size是0,所以hits.hits就是空的 aggregations:聚合结果 popular_color:我们指定的某个聚合的名称 buckets:根据我们指定的field划分出的buckets key:每个bucket对应的那个值 doc_count:这个bucket分组内,有多少个数据 数量,其实就是这种颜色的销量
每种颜色对应的bucket中的数据的默认的排序规则:按照doc_count降序排序
需求2 统计每种颜色电视平均价格
GET /tvs/_search
{
"size" : 0,
"aggs": {
"colors": {
"terms": {
"field": "color"
},
"aggs": {
"avg_price": {
"avg": {
"field": "price"
}
}
}
}
}
}
在一个aggs执行的bucket操作(terms),平级的json结构下,再加一个aggs,这个第二个aggs内部,同样取个名字,执行一个metric操作,avg,对之前的每个bucket中的数据的指定的field,price field,求一个平均值
返回:
{
"took" : 4,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 8,
"relation" : "eq"
},
"max_score" : null,
"hits" : [ ]
},
"aggregations" : {
"colors" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : "红色",
"doc_count" : 4,
"avg_price" : {
"value" : 3250.0
}
},
{
"key" : "绿色",
"doc_count" : 2,
"avg_price" : {
"value" : 2100.0
}
},
{
"key" : "蓝色",
"doc_count" : 2,
"avg_price" : {
"value" : 2000.0
}
}
]
}
}
}
buckets,除了key和doc_count avg_price:我们自己取的metric aggs的名字 value:我们的metric计算的结果,每个bucket中的数据的price字段求平均值后的结果
相当于sql: select avg(price) from tvs group by color
需求3 继续下钻分析
每个颜色下,平均价格及每个颜色下,每个品牌的平均价格
GET /tvs/_search
{
"size": 0,
"aggs": {
"group_by_color": {
"terms": {
"field": "color"
},
"aggs": {
"color_avg_price": {
"avg": {
"field": "price"
}
},
"group_by_brand": {
"terms": {
"field": "brand"
},
"aggs": {
"brand_avg_price": {
"avg": {
"field": "price"
}
}
}
}
}
}
}
}
需求4:更多的metric
count:bucket,terms,自动就会有一个doc_count,就相当于是count avg:avg aggs,求平均值 max:求一个bucket内,指定field值最大的那个数据 min:求一个bucket内,指定field值最小的那个数据 sum:求一个bucket内,指定field值的总和
GET /tvs/_search
{
"size" : 0,
"aggs": {
"colors": {
"terms": {
"field": "color"
},
"aggs": {
"avg_price": { "avg": { "field": "price" } },
"min_price" : { "min": { "field": "price"} },
"max_price" : { "max": { "field": "price"} },
"sum_price" : { "sum": { "field": "price" } }
}
}
}
}
需求5:划分范围 histogram
GET /tvs/_search
{
"size" : 0,
"aggs":{
"price":{
"histogram":{
"field": "price",
"interval": 2000
},
"aggs":{
"income": {
"sum": {
"field" : "price"
}
}
}
}
}
}
histogram:类似于terms,也是进行bucket分组操作,接收一个field,按照这个field的值的各个范围区间,进行bucket分组操作
"histogram":{
"field": "price",
"interval": 2000
}
interval:2000,划分范围,02000,20004000,40006000,60008000,8000~10000,buckets
bucket有了之后,一样的,去对每个bucket执行avg,count,sum,max,min,等各种metric操作,聚合分析
需求6:按照日期分组聚合
date_histogram,按照我们指定的某个date类型的日期field,以及日期interval,按照一定的日期间隔,去划分bucket
min_doc_count:即使某个日期interval,2017-01-01~2017-01-31中,一条数据都没有,那么这个区间也是要返回的,不然默认是会过滤掉这个区间的 extended_bounds,min,max:划分bucket的时候,会限定在这个起始日期,和截止日期内
GET /tvs/_search
{
"size" : 0,
"aggs": {
"sales": {
"date_histogram": {
"field": "sold_date",
"interval": "month",
"format": "yyyy-MM-dd",
"min_doc_count" : 0,
"extended_bounds" : {
"min" : "2019-01-01",
"max" : "2020-12-31"
}
}
}
}
}
需求7 统计每季度每个品牌的销售额
GET /tvs/_search
{
"size": 0,
"aggs": {
"group_by_sold_date": {
"date_histogram": {
"field": "sold_date",
"interval": "quarter",
"format": "yyyy-MM-dd",
"min_doc_count": 0,
"extended_bounds": {
"min": "2019-01-01",
"max": "2020-12-31"
}
},
"aggs": {
"group_by_brand": {
"terms": {
"field": "brand"
},
"aggs": {
"sum_price": {
"sum": {
"field": "price"
}
}
}
},
"total_sum_price": {
"sum": {
"field": "price"
}
}
}
}
}
}
需求8 :搜索与聚合结合,查询某个品牌按颜色销量
搜索与聚合可以结合起来。
sql select count(*)
from tvs
where brand like “%小米%”
group by color
es aggregation,scope,任何的聚合,都必须在搜索出来的结果数据中之行,搜索结果,就是聚合分析操作的scope
GET /tvs/_search
{
"size": 0,
"query": {
"term": {
"brand": {
"value": "小米"
}
}
},
"aggs": {
"group_by_color": {
"terms": {
"field": "color"
}
}
}
}
需求9 global bucket:单个品牌与所有品牌销量对比
aggregation,scope,一个聚合操作,必须在query的搜索结果范围内执行
出来两个结果,一个结果,是基于query搜索结果来聚合的; 一个结果,是对所有数据执行聚合的
GET /tvs/_search
{
"size": 0,
"query": {
"term": {
"brand": {
"value": "小米"
}
}
},
"aggs": {
"single_brand_avg_price": {
"avg": {
"field": "price"
}
},
"all": {
"global": {},
"aggs": {
"all_brand_avg_price": {
"avg": {
"field": "price"
}
}
}
}
}
}
需求10:过滤+聚合:统计价格大于1200的电视平均价格
搜索+聚合
过滤+聚合
GET /tvs/_search
{
"size": 0,
"query": {
"constant_score": {
"filter": {
"range": {
"price": {
"gte": 1200
}
}
}
}
},
"aggs": {
"avg_price": {
"avg": {
"field": "price"
}
}
}
}
需求11 bucket filter:统计品牌最近一个月的平均价格
GET /tvs/_search
{
"size": 0,
"query": {
"term": {
"brand": {
"value": "小米"
}
}
},
"aggs": {
"recent_150d": {
"filter": {
"range": {
"sold_date": {
"gte": "now-150d"
}
}
},
"aggs": {
"recent_150d_avg_price": {
"avg": {
"field": "price"
}
}
}
},
"recent_140d": {
"filter": {
"range": {
"sold_date": {
"gte": "now-140d"
}
}
},
"aggs": {
"recent_140d_avg_price": {
"avg": {
"field": "price"
}
}
}
},
"recent_130d": {
"filter": {
"range": {
"sold_date": {
"gte": "now-130d"
}
}
},
"aggs": {
"recent_130d_avg_price": {
"avg": {
"field": "price"
}
}
}
}
}
}
aggs.filter,针对的是聚合去做的
如果放query里面的filter,是全局的,会对所有的数据都有影响
但是,如果,比如说,你要统计,长虹电视,最近1个月的平均值; 最近3个月的平均值; 最近6个月的平均值
bucket filter:对不同的bucket下的aggs,进行filter
需求12 排序:按每种颜色的平均销售额降序排序
GET /tvs/_search
{
"size": 0,
"aggs": {
"group_by_color": {
"terms": {
"field": "color",
"order": {
"avg_price": "asc"
}
},
"aggs": {
"avg_price": {
"avg": {
"field": "price"
}
}
}
}
}
}
相当于sql子表数据字段可以立刻使用。
需求13 排序:按每种颜色的每种品牌平均销售额降序排序
GET /tvs/_search
{
"size": 0,
"aggs": {
"group_by_color": {
"terms": {
"field": "color"
},
"aggs": {
"group_by_brand": {
"terms": {
"field": "brand",
"order": {
"avg_price": "desc"
}
},
"aggs": {
"avg_price": {
"avg": {
"field": "price"
}
}
}
}
}
}
}
}
|