IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 大数据 -> flink kakfa 数据读写到hudi -> 正文阅读

[大数据]flink kakfa 数据读写到hudi

1. 运行环境

1.1 版本

组件版本
hudi10.0
flink13.5

1.2.flink lib 需要的jar 包

hudi-flink-bundle_2.12-0.10.0.jar
flink-sql-connector-kafka_2.12-1.13.5.jar
flink-shaded-hadoop-2-uber-2.8.3-10.0.jar
下面是所有的jar 包

-rw-r--r-- 1 root root   7802399 11 08:27 doris-flink-1.0-SNAPSHOT.jar
-rw-r--r-- 1 root root    249571 1227 23:32 flink-connector-jdbc_2.12-1.13.5.jar
-rw-r--r-- 1 root root    359138 11 10:17 flink-connector-kafka_2.12-1.13.5.jar
-rw-r--r-- 1 hive 1007     92315 1215 08:23 flink-csv-1.13.5.jar
-rw-r--r-- 1 hive 1007 106535830 1215 08:29 flink-dist_2.12-1.13.5.jar
-rw-r--r-- 1 hive 1007    148127 1215 08:23 flink-json-1.13.5.jar
-rw-r--r-- 1 root root  43317025 26 20:51 flink-shaded-hadoop-2-uber-2.8.3-10.0.jar
-rw-r--r-- 1 hive 1007   7709740 1215 06:57 flink-shaded-zookeeper-3.4.14.jar
-rw-r--r-- 1 root root   3674116 213 14:08 flink-sql-connector-kafka_2.12-1.13.5.jar
-rw-r--r-- 1 hive 1007  35051557 1215 08:28 flink-table_2.12-1.13.5.jar
-rw-r--r-- 1 hive 1007  38613344 1215 08:28 flink-table-blink_2.12-1.13.5.jar
-rw-r--r-- 1 root root  62447468 26 20:44 hudi-flink-bundle_2.12-0.10.0.jar
-rw-r--r-- 1 root root  17276348 26 20:51 hudi-hadoop-mr-bundle-0.10.0.jar
-rw-r--r-- 1 root root   1893564 11 10:17 kafka-clients-2.0.0.jar
-rw-r--r-- 1 hive 1007    207909 1215 06:56 log4j-1.2-api-2.16.0.jar
-rw-r--r-- 1 hive 1007    301892 1215 06:56 log4j-api-2.16.0.jar
-rw-r--r-- 1 hive 1007   1789565 1215 06:56 log4j-core-2.16.0.jar
-rw-r--r-- 1 hive 1007     24258 1215 06:56 log4j-slf4j-impl-2.16.0.jar
-rw-r--r-- 1 root root    724213 1227 23:23 mysql-connector-java-5.1.9.jar

1.3 flink-conf.yaml 的 checkpoints 配置

参数说明

参数说明
state.backendrocksdbState backend的配置
state.backend.incrementaltrue检查点中保存的数据是否采用增量的方式
state.checkpoints.dirhdfs://node01.com:8020/flink/flink-checkpoints用于指定checkpoint的data files和meta data存储的目录
state.savepoints.dirhdfs://node01.com:8020/flink-savepointsSavePoint 存储的位置
classloader.check-leaked-classloaderfalse如果一个作业的用户类加载器在作业终止后使用,则装入类的尝试将失败。这通常是由滞留线程或行为不当的库泄漏类加载器造成的,这也可能导致其他作业使用类加载器。只有当泄漏阻止了进一步的作业运行时,才应该禁用此检查.
classloader.resolve-orderparent-first定义从用户代码加载类时的类解析策略,即首先检查用户代码jar(“child-first”)还是应用程序类路径【application classpath】(“parent-first”)。默认设置指示首先从用户代码jar加载类,这意味着用户代码jar可以包含和加载不同于Flink使用的依赖项(传递)
execution.checkpointing.interval3000Checkpoint间隔时间,单位为毫秒。
#参数
state.backend: rocksdb
state.backend.incremental: true
state.checkpoints.dir: hdfs://node01.com:8020/flink/flink-checkpoints
state.savepoints.dir: hdfs://node01.com:8020/flink-savepoints
classloader.check-leaked-classloader: false
classloader.resolve-order: parent-first
execution.checkpointing.interval: 3000

2.场景

kafka ----> flink sql ----> hudi —> flink sql read hudi
在这里插入图片描述

3. flink sql client 客户端模式

3.1 进入客户端

[root@node01 bin]# ./sql-client.sh  embedded -j /opt/module/flink/flink-1.13.5/lib/hudi-flink-bundle_2.12-0.10.0.jar 
Setting HBASE_CONF_DIR=/etc/hbase/conf because no HBASE_CONF_DIR was set.

3.2创建kafka 表


Flink SQL> CREATE TABLE order_kafka_source (
>   orderId STRING,
>   userId STRING,
>   orderTime STRING,
>   ip STRING,
>   orderMoney DOUBLE,
>   orderStatus INT
> ) WITH (
>   'connector' = 'kafka',
>   'topic' = 'hudiflink',
>   'properties.bootstrap.servers' = '192.168.1.161:6667',
>   'properties.group.id' = 'hudi-1001',
>   'scan.startup.mode' = 'latest-offset',
>   'format' = 'json',
>   'json.fail-on-missing-field' = 'false',
>   'json.ignore-parse-errors' = 'true'
> );
[INFO] Execute statement succeed.

3.3 创建hudi 写入表

Flink SQL> CREATE TABLE order_hudi_sink (
>   orderId STRING PRIMARY KEY NOT ENFORCED,
>   userId STRING,
>   orderTime STRING,
>   ip STRING,
>   orderMoney DOUBLE,
>   orderStatus INT,
>   ts STRING,
>   partition_day STRING
> )
> PARTITIONED BY (partition_day) 
> WITH (
>   'connector' = 'hudi',
>   'path' = 'hdfs://192.168.1.161:8020/hudi-warehouse/order_hudi_sink',
>   'table.type' = 'MERGE_ON_READ',
>   'write.operation' = 'upsert',
>   'hoodie.datasource.write.recordkey.field'= 'orderId',
>   'write.precombine.field' = 'ts',
>   'write.tasks'= '1',
>   'compaction.tasks' = '1', 
>   'compaction.async.enabled' = 'true', 
>   'compaction.trigger.strategy' = 'num_commits', 
>   'compaction.delta_commits' = '1'
> );
[INFO] Execute statement succeed.

3.4 flink 实时读取表

Flink SQL> CREATE TABLE read_hudi2(
>   orderId STRING PRIMARY KEY NOT ENFORCED,
>   userId STRING,
>   orderTime STRING,
>   ip STRING,
>   orderMoney DOUBLE,
>   orderStatus INT,
>   ts STRING,
>   partition_day STRING
> )
> PARTITIONED BY (partition_day) 
> WITH (
>     'connector' = 'hudi',
>     'path' = 'hdfs://192.168.1.161:8020/hudi-warehouse/order_hudi_sink',
>     'table.type' = 'MERGE_ON_READ',
>     'read.streaming.enabled' = 'true',
>     'read.streaming.check-interval' = '4'
> );
[INFO] Execute statement succeed.

3.5 实时流式 插入

Flink SQL> INSERT INTO order_hudi_sink 
> SELECT
>   orderId, userId, orderTime, ip, orderMoney, orderStatus,
>   substring(orderId, 0, 17) AS ts, substring(orderTime, 0, 10) AS partition_day 
> FROM order_kafka_source ;
[INFO] Submitting SQL update statement to the cluster...
[INFO] SQL update statement has been successfully submitted to the cluster:
Job ID: ea29591aeb04310b88999888226c04b2

如:
在这里插入图片描述

4.结果

在这里插入图片描述

5.代码实现

package com.wudl.hudi.sink;

import org.apache.flink.api.common.restartstrategy.RestartStrategies;
import org.apache.flink.runtime.state.filesystem.FsStateBackend;
import org.apache.flink.streaming.api.CheckpointingMode;
import org.apache.flink.streaming.api.environment.CheckpointConfig;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.TableEnvironment;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;

import static org.apache.flink.table.api.Expressions.$;

/**
 * @author :wudl
 * @date :Created in 2022-02-07 22:56
 * @description:
 * @modified By:
 * @version: 1.0
 */

public class FlinkKafkaWriteHudi {
    public static void main(String[] args) throws Exception {
        // 1-获取表执行环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        // TODO: 由于增量将数据写入到Hudi表,所以需要启动Flink Checkpoint检查点
        env.setParallelism(1);
        EnvironmentSettings settings = EnvironmentSettings
                .newInstance()
                .inStreamingMode() // 设置流式模式
                .build();
        StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env, settings);


        // 1.1 开启CK
        env.enableCheckpointing(5000L);
        env.getCheckpointConfig().setCheckpointTimeout(10000L);
        env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);
        //正常Cancel任务时,保留最后一次CK
        env.getCheckpointConfig().enableExternalizedCheckpoints(CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);
        //重启策略
        env.setRestartStrategy(RestartStrategies.fixedDelayRestart(3, 5000L));
        //状态后端
        env.setStateBackend(new FsStateBackend("hdfs://192.168.1.161:8020/flink-hudi/ck"));
        //设置访问HDFS的用户名
        System.setProperty("HADOOP_USER_NAME", "root");

        // 2-创建输入表,TODO:从Kafka消费数据
        tableEnv.executeSql(
                "CREATE TABLE order_kafka_source (\n" +
                        "  orderId STRING,\n" +
                        "  userId STRING,\n" +
                        "  orderTime STRING,\n" +
                        "  ip STRING,\n" +
                        "  orderMoney DOUBLE,\n" +
                        "  orderStatus INT\n" +
                        ") WITH (\n" +
                        "  'connector' = 'kafka',\n" +
                        "  'topic' = 'hudiflink',\n" +
                        "  'properties.bootstrap.servers' = '192.168.1.161:6667',\n" +
                        "  'properties.group.id' = 'gid-1002',\n" +
                        "  'scan.startup.mode' = 'latest-offset',\n" +
                        "  'format' = 'json',\n" +
                        "  'json.fail-on-missing-field' = 'false',\n" +
                        "  'json.ignore-parse-errors' = 'true'\n" +
                        ")"
        );

        // 3-转换数据:可以使用SQL,也可以时Table API
        Table etlTable = tableEnv
                .from("order_kafka_source")
                // 添加字段:Hudi表数据合并字段,时间戳, "orderId": "20211122103434136000001" ->  20211122103434136
                .addColumns(
                        $("orderId").substring(0, 17).as("ts")
                )
                // 添加字段:Hudi表分区字段, "orderTime": "2021-11-22 10:34:34.136" -> 021-11-22
                .addColumns(
                        $("orderTime").substring(0, 10).as("partition_day")
                );
        tableEnv.createTemporaryView("view_order", etlTable);

        // 4-创建输出表,TODO: 关联到Hudi表,指定Hudi表名称,存储路径,字段名称等等信息
        tableEnv.executeSql(
                "CREATE TABLE order_hudi_sink (\n" +
                        "  orderId STRING PRIMARY KEY NOT ENFORCED,\n" +
                        "  userId STRING,\n" +
                        "  orderTime STRING,\n" +
                        "  ip STRING,\n" +
                        "  orderMoney DOUBLE,\n" +
                        "  orderStatus INT,\n" +
                        "  ts STRING,\n" +
                        "  partition_day STRING\n" +
                        ")\n" +
                        "PARTITIONED BY (partition_day)\n" +
                        "WITH (\n" +
                        "    'connector' = 'hudi',\n" +
//                               "    'path' = 'file:///D:/flink_hudi_order',\n" +
                        "  'path' = 'hdfs://192.168.1.161:8020/hudi-warehouse/order_hudi_sink' ,\n" +
                        "    'table.type' = 'MERGE_ON_READ',\n" +
                        "    'write.operation' = 'upsert',\n" +
                        "    'hoodie.datasource.write.recordkey.field'= 'orderId',\n" +
                        "    'write.precombine.field' = 'ts',\n" +
                        "    'write.tasks'= '1'\n" +
                        ")"
        );

        tableEnv.executeSql("select *from order_hudi_sink").print();

        // 5-通过子查询方式,将数据写入输出表
        tableEnv.executeSql(
                "INSERT INTO order_hudi_sink " +
                        "SELECT orderId, userId, orderTime, ip, orderMoney, orderStatus, ts, partition_day FROM view_order"
        );

    }
}

  大数据 最新文章
实现Kafka至少消费一次
亚马逊云科技:还在苦于ETL?Zero ETL的时代
初探MapReduce
【SpringBoot框架篇】32.基于注解+redis实现
Elasticsearch:如何减少 Elasticsearch 集
Go redis操作
Redis面试题
专题五 Redis高并发场景
基于GBase8s和Calcite的多数据源查询
Redis——底层数据结构原理
上一篇文章      下一篇文章      查看所有文章
加:2022-02-14 21:14:25  更:2022-02-14 21:15:21 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/16 21:53:31-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码