IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 大数据 -> Kafka一些非比寻常的坑 -> 正文阅读

[大数据]Kafka一些非比寻常的坑

前言

我的上家公司是做餐饮系统的,每天中午和晚上用餐高峰期,系统的并发量不容小觑。为了保险起见,公司规定各部门都要在吃饭的时间轮流值班,防止出现线上问题时能够及时处理。

我当时在后厨显示系统团队,该系统属于订单的下游业务。

  1. 用户点完菜下单后,订单系统会通过发 Kafka 消息给我们系统;

  2. 系统读取消息后,做业务逻辑处理,持久化订单和菜品数据,然后展示到划菜客户端;

  3. 这样厨师就知道哪个订单要做哪些菜,有些菜做好了,就可以通过该系统出菜;

  4. 系统自动通知服务员上菜;

  5. 如果服务员上完菜,修改菜品上菜状态,用户就知道哪些菜已经上了,哪些还没有上。

这个系统可以大大提高后厨到用户的效率。

事实证明,这一切的关键是消息中间件:Kafka。如果它有问题,将会直接影响到后厨显示系统的功能。

接下来,我跟大家一起聊聊使用 Kafka 两年时间踩过哪些坑?

1. 顺序问题

1.1 为什么要保证消息的顺序?

刚开始我们系统的商户很少,为了快速实现功能,我们没想太多。既然是走消息中间件 Kafka 通信,订单系统发消息时将订单详细数据放在消息体,我们后厨显示系统只要订阅 topic,就能获取相关消息数据,然后处理自己的业务即可。

不过这套方案有个关键因素:要保证消息的顺序

为什么呢?

订单有很多状态,比如下单、支付、完成、撤销等。不可能下单的消息都没读取到,就先读取支付或撤销的消息吧。如果真的这样,数据不是会产生错乱?

好吧,看来保证消息顺序是有必要的。

1.2 如何保证消息顺序?

我们都知道 Kafka 的 topic 是无序的,但是一个 topic 包含多个 partition,每个 partition 内部是有序的。

如此一来,思路就变得清晰了:只要保证生产者写消息时,按照一定的规则写到同一个 partition。不同的消费者读不同的 partition 的消息,就能保证生产和消费者消息的顺序。

我们刚开始就是这么做的,同一个商户编号的消息写到同一个 partition。topic 中创建了 4 个 partition,然后部署了 4 个消费者节点,构成消费者组。一个 partition 对应一个消费者节点。

从理论上说,这套方案是能够保证消息顺序的。

一切规划得看似“天衣无缝”,我们就这样”顺利“上线了。

1.3 出现意外

该功能上线了一段时间,刚开始还是比较正常的。

但是,好景不长,很快就收到用户投诉,说在划菜客户端有些订单和菜品一直看不到,无法划菜。

我定位到了原因,公司在那段时间网络经常不稳定,业务接口时不时报超时业务请求时不时会连不上数据库

这种情况对顺序消息的打击,可以说是毁灭性的。

为什么这么说?

假设订单系统发了“下单”、“支付”、“完成” 三条消息。

而”下单“消息由于网络原因我们系统处理失败了,而后面的两条消息的数据是无法入库的。因为只有”下单“消息的数据才是完整的数据,其他类型的消息只会更新状态。

加上我们当时没有做失败重试机制,使得这个问题被放大了。问题变成:一旦“下单”消息的数据入库失败,用户就永远看不到这个订单和菜品了。

那么这个紧急的问题要如何解决呢?

1.4 解决过程

最开始我们的想法是:在消费者处理消息时,如果处理失败了,立马重试 3-5 次。

如果有些请求要第 6 次才能成功怎么办

不可能一直重试呀,这种同步重试机制,会阻塞其他商户订单消息的读取。

显然,用上面的这种同步重试机制在出现异常的情况,会严重影响消息消费者的消费速度,降低它的吞吐量。

如此看来,我们不得不用异步重试机制了。

如果用异步重试机制,处理失败的消息就得保存到重试表下来。

但有个新问题立马出现:只存一条消息如何保证顺序

存一条消息的确无法保证顺序,假如“下单”消息失败了,还没来得及异步重试。此时,“支付”消息被消费了,它肯定是不能被正常消费的。

此时,“支付”消息该一直等着,每隔一段时间判断一次,它前面的消息都有没有被消费?

如果真的这么做,会出现两个问题:

  • “支付”消息前面只有“下单”消息,这种情况比较简单。但如果某种类型的消息,前面有 N 多种消息,需要判断多少次呀?这种判断跟订单系统的耦合性太强了,相当于要把他们系统的逻辑搬一部分到我们系统;

  • 影响消费者的消费速度。

这时有种更简单的方案浮出水面:消费者在处理消息时,先判断该订单号在重试表有没有数据,如果有则直接把当前消息保存到重试表;如果没有,则进行业务处理,如果出现异常,把该消息保存到重试表。

后来我们用 elastic-job 建立了失败重试机制,如果重试了 7 次后还是失败,则将该消息的状态标记为失败,发邮件通知开发人员。

终于由于网络不稳定,导致用户在划菜客户端有些订单和菜品一直看不到的问题被解决了。现在商户顶多偶尔延迟看到菜品,比一直看不菜品好太多。

2. 消息积压

随着销售团队的市场推广,我们系统的商户越来越多。随之而来的是消息的数量越来越大,导致消费者处理不过来,经常出现消息积压的情况。

对商户的影响非常直观,划菜客户端上的订单和菜品可能半个小时后才能看到。一两分钟还能忍,半个销售的延迟,对有些暴脾气的商户哪里忍得了,马上投诉过来了。我们那段时间经常接到商户投诉说订单和菜品有延迟。

虽说加服务器节点就能解决问题,但是按照公司为了省钱的惯例,要先做系统优化,所以我们开始了消息积压问题解决之旅。

2.1?消息体过大

虽说 Kafka 号称支持百万级的 TPS,但从 producer 发送消息到 broker 需要一次网络 IO,broker 写数据到磁盘需要一次磁盘 IO(写操作),consumer 从 broker 获取消息先经过一次磁盘 IO(读操作),再经过一次网络 IO。

一次简单的消息从生产到消费过程,需要经过两次网络 IO 和两次磁盘 IO。如果消息体过大,势必会增加 IO 的耗时,进而影响 Kafka 生产和消费的速度。消费者速度太慢的结果,就会出现消息积压情况。

除了上面的问题之外,消息体过大还会浪费服务器的磁盘空间。稍不注意,可能会出现磁盘空间不足的情况。

此时,我们已经到了需要优化消息体过大问题的时候。

如何优化呢?

我们重新梳理了一下业务,没有必要知道订单的中间状态,只需知道一个最终状态就可以了。

如此甚好,我们就可以这样设计了:

  • 订单系统发送的消息体只用包含 id 和状态等关键信息;

  • 后厨显示系统消费消息后,通过 id 调用订单系统的订单详情查询接口获取数据;

  • 后厨显示系统判断数据库中是否有该订单的数据,如果没有则入库,有则更新。

果然这样调整之后,消息积压问题很长一段时间都没再出现。

2.2 路由规则不合理

还真别高兴的太早,有天中午又有商户投诉说订单和菜品有延迟。我们一查 Kafka 的 topic 竟然又出现了消息积压。

但这次有点诡异,不是所有 partition 上的消息都有积压,而是只有一个。

刚开始,我以为是消费那个 partition 消息的节点出了什么问题导致的。但是经过排查,没有发现任何异常。

这就奇怪了,到底哪里有问题呢?

后来,我查日志和数据库发现:有几个商户的订单量特别大,刚好这几个商户被分到同一个 partition,使得该 partition 的消息量比其他 partition 要多很多。

这时我们才意识到,发消息时按商户编号路由 partition 的规则不合理。可能会导致有些 partition 消息太多消费者处理不过来,而有些 partition 却因为消息太少,消费者出现空闲的情况。

为了避免出现这种分配不均匀的情况,我们需要对发消息的路由规则做一下调整。

我们思考了一下,用订单号做路由相对更均匀,不会出现单个订单发消息次数特别多的情况。除非是遇到某个人一直加菜的情况,但是加菜是需要花钱的,所以其实同一个订单的消息数量并不多。

调整后按订单号路由到不同的 partition,同一个订单号的消息,每次到发到同一个 partition。

调整后,消息积压的问题又有很长一段时间都没有再出现。我们的商户数量在这段时间,增长的非常快,越来越多了。

2.3?批量操作引起的连锁反应

在高并发的场景中,消息积压问题可以说如影随形,真的没办法从根本上解决。表面上看已经解决了,但后面不知道什么时候就会冒出一次。

比如这次。

有天下午,产品过来说:“有几个商户投诉过来了,他们说菜品有延迟,快查一下原因”。

这次问题出现得有点奇怪。

为什么这么说?

首先这个时间点就有点奇怪,平常出问题,不都是中午或者晚上用餐高峰期吗?怎么这次问题出现在下午?

根据以往积累的经验,我直接看了 Kafka 的 topic 的数据,果然上面消息有积压。但这次每个 partition 都积压了十几万的消息没有消费,比以往加压的消息数量增加了几百倍。这次消息积压得极不寻常。

我赶紧查服务监控看看消费者挂了没,还好没挂。又查服务日志没有发现异常。这时我有点迷茫,碰运气问了问订单组下午发生了什么事情没?他们说下午有个促销活动,跑了一个 Job 批量更新过有些商户的订单信息。

这时,我一下子如梦初醒:是他们在?Job?中批量发消息导致的问题。怎么没有通知我们呢?实在太坑了。

虽说知道问题的原因了,倒是眼前积压的这十几万的消息该如何处理呢?

此时,如果直接调大 partition 数量是不行的,历史消息已经存储到4个固定的 partition,只有新增的消息才会到新的 partition。我们重点需要处理的是已有的 partition。

直接加服务节点也不行,因为 Kafka 允许同组的多个 partition 被一个 consumer 消费,但不允许一个 partition 被同组的多个 consumer 消费,可能会造成资源浪费。

看来只有用多线程处理了。

为了紧急解决问题,我改成了用线程池处理消息,核心线程和最大线程数都配置成了 50。

调整之后,果然,消息积压数量不断减少。

但此时有个更严重的问题出现:我收到了报警邮件,有两个订单系统的节点宕机了。

不久,订单组的同事过来找我说,我们系统调用他们订单查询接口的并发量突增,超过了预计的好几倍,导致有 2 个服务节点挂了。他们把查询功能单独整成了一个服务,部署了 6 个节点,挂了 2 个节点。再不处理,另外 4 个节点也会挂。订单服务可以说是公司最核心的服务,它挂了公司损失会很大,情况万分紧急。

为了解决这个问题,只能先把线程数调小。

幸好,线程数是可以通过 ZooKeeper 动态调整的。我把核心线程数调成了 8 个,核心线程数改成了 10 个。

后面,运维把订单服务挂的 2 个节点重启后恢复正常了。以防万一,再多加了 2 个节点。为了确保订单服务不会出现问题,就保持目前的消费速度,后厨显示系统的消息积压问题,1 小时候后也恢复正常了。

后来,我们开了一次复盘会,得出的结论是:

  • 订单系统的批量操作一定提前通知下游系统团队;

  • 下游系统团队多线程调用订单查询接口一定要做压测;

  • 这次给订单查询服务敲响了警钟。它作为公司的核心服务,应对高并发场景做的不够好,需要做优化;

  • 对消息积压情况加监控。

顺便说一下,对于要求严格保证消息顺序的场景,可以将线程池改成多个队列,每个队列用单线程处理。

2.4?表过大

为了防止后面再次出现消息积压问题,消费者后面就一直用多线程处理消息。

但有天中午我们还是收到很多报警邮件,提醒我们 Kafka 的 topic 消息有积压。我们正在查原因,此时产品跑过来说:“又有商户投诉说菜品有延迟,赶紧看看”。

这次她看起来有些不耐烦,确实优化了很多次还是出现了同样的问题。

在外行看来:为什么同一个问题一直解决不了?

其实技术心里的苦他们是不知道的。

表面上问题的症状是一样的,都是出现了菜品延迟。他们知道的是因为消息积压导致的,但是他们不知道深层次的原因。导致消息积压的原因其实有很多种,这也许是使用消息中间件的通病吧。

我沉默不语,只能硬着头皮定位原因了。

后来我查日志发现消费者消费一条消息的耗时长达 2 秒。以前是 500 毫秒,现在怎么会变成 2 秒呢?

奇怪了,消费者的代码也没有做大的调整,为什么会出现这种情况呢?

查了一下线上菜品表,单表数据量竟然到了几千万,其他的划菜表也是一样,现在单表保存的数据太多了。

我们组梳理了一下业务,其实菜品在客户端只展示最近 3 天的即可。

这就好办了,我们服务端存着多余的数据,不如把表中多余的数据归档。于是 DBA 帮我们把数据做了归档,只保留最近 7 天的数据。

如此调整后,消息积压问题被解决了,又恢复了往日的平静。

3. 主键冲突

别高兴得太早了,还有其他的问题。比如报警邮件经常报出数据库异常:Duplicate entry '6' for key 'PRIMARY',说主键冲突。

出现这种问题一般是由于有两个以上相同主键的 SQL,同时插入数据,第一个插入成功后,第二个插入的时候会报主键冲突。表的主键是唯一的,不允许重复。

我仔细检查了代码,发现代码逻辑会先根据主键从表中查询订单是否存在,如果存在则更新状态,不存在才插入数据,没得问题。

这种判断在并发量不大时,是有用的。但是如果在高并发的场景下,两个请求同一时刻都查到订单不存在,一个请求先插入数据,另一个请求再插入数据时就会出现主键冲突的异常。

解决这个问题最常规的做法是:加锁。

我刚开始也是这样想的,加数据库悲观锁肯定是不行的,太影响性能。加数据库乐观锁,基于版本号判断,一般用于更新操作,像这种插入操作基本上不会用。

剩下的只能用分布式锁了,我们系统在用 Redis,可以加基于 Redis 的分布式锁,锁定订单号。

但后面仔细思考了一下:

  • 加分布式锁也可能会影响消费者的消息处理速度;

  • 消费者依赖于 Redis,如果?Redis?出现网络超时,我们的服务就悲剧了。

所以,我也不打算用分布式锁。

而是选择使用 MySQL 的 INSERT INTO ...ON DUPLICATE KEY UPDATE 语法:

INSERTINTOtable (column_list)VALUES (value_list)ONDUPLICATEKEYUPDATEc1 = v1,c2 = v2,...;
它会先尝试把数据插入表,如果主键冲突的话那么更新字段。

把以前的 insert 语句改造之后,就没再出现过主键冲突问题。

4. 数据库主从延迟

不久之后的某天,又收到商户投诉说下单后,在划菜客户端上看得到订单,但是看到的菜品不全,有时甚至订单和菜品数据都看不到。

这个问题跟以往的都不一样,根据以往的经验先看?Kafka 的 topic 中消息有没有积压,但这次并没有积压。

再查了服务日志,发现订单系统接口返回的数据有些为空,有些只返回了订单数据,没返回菜品数据。

这就非常奇怪了,我直接过去找订单组的同事。他们仔细排查服务,没有发现问题。这时我们不约而同的想到,会不会是数据库出问题了,一起去找 DBA。果然 DBA发现数据库的主库同步数据到从库,由于网络原因偶尔有延迟,有时延迟有 3 秒。

如果我们的业务流程从发消息到消费消息耗时小于 3 秒,调用订单详情查询接口时,可能会查不到数据,或者查到的不是最新的数据。

这个问题非常严重,会导致直接我们的数据错误。

为了解决这个问题,我们也加了重试机制。调用接口查询数据时,如果返回数据为空,或者只返回了订单没有菜品,则加入重试表。

调整后,商户投诉的问题被解决了。

5. 重复消费

Kafka消费消息时支持三种模式:

  • at most once 模式:最多一次。保证每一条消息 commit 成功之后,再进行消费处理。消息可能会丢失,但不会重复;

  • at least once 模式:至少一次。保证每一条消息处理成功之后,再进行 commit。消息不会丢失,但可能会重复;

  • exactly once 模式:精确传递一次。将 offset 作为唯一 id 与消息同时处理,并且保证处理的原子性。消息只会处理一次,不丢失也不会重复。但这种方式很难做到。

Kafka 默认的模式是 at least once,但这种模式可能会产生重复消费的问题。所以我们的业务逻辑必须做幂等设计。

而我们的业务场景保存数据时使用了 INSERT INTO ...ON DUPLICATE KEY UPDATE 语法,不存在时插入,存在时更新,是天然支持幂等性的。

6. 多环境消费问题

我们当时线上环境分为:pre(预发布环境)和 prod(生产环境),两个环境共用同一个数据库,并且共用同一个 Kafka 集群。

需要注意的是,在配置?Kafka?的 topic 的时候,要加前缀用于区分不同环境。pre环境的以 pre_ 开头,比如 pre_order。生产环境以 prod_开头,比如 prod_order,防止消息在不同环境中串了。

但有次运维在 pre 环境切换节点,配置 topic 的时候,错误地配成了 prod 的 topic。刚好那天我们有新功能上 pre 环境,结果悲剧了:prod?的有些消息被?pre 环境的?consumer?消费了。而由于消息体做了调整,导致 pre 环境的 consumer 处理消息一直失败。

其结果是生产环境丢了部分消息。不过还好,最后生产环境消费者通过重 置offset,重新读取了那一部分消息解决了问题,没有造成太大损失。

后记

除了上述问题之外,我还遇到过:

  • Kafka 的 consumer 使用自动确认机制,导致 CPU 使用率 100%;

  • Kafka?集群中的一个 broker 节点挂了,重启后又一直挂。

这两个问题说起来有些复杂,我就不一一列举了。非常感谢那两年使用消息中间件 Kafka 的经历,虽说遇到过挺多问题,踩了很多坑,走了很多弯路,但是实打实的让我积累了很多宝贵的经验,快速成长了。

其实 Kafka 是一个非常优秀的消息中间件,我所遇到的绝大多数问题都并非 Kafka 自身的问题(除了 CPU 使用率 100% 是它的一个 bug 导致的之外)

  大数据 最新文章
实现Kafka至少消费一次
亚马逊云科技:还在苦于ETL?Zero ETL的时代
初探MapReduce
【SpringBoot框架篇】32.基于注解+redis实现
Elasticsearch:如何减少 Elasticsearch 集
Go redis操作
Redis面试题
专题五 Redis高并发场景
基于GBase8s和Calcite的多数据源查询
Redis——底层数据结构原理
上一篇文章      下一篇文章      查看所有文章
加:2022-03-03 16:21:05  更:2022-03-03 16:22:37 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/16 20:06:03-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码