IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 大数据 -> flink-connector-mysql-cdc_2.0.2 -> 正文阅读

[大数据]flink-connector-mysql-cdc_2.0.2

官方参考文档:MySQL CDC Connector — Flink CDC documentationhttps://ververica.github.io/flink-cdc-connectors/master/content/connectors/mysql-cdc.html

1、测试步骤:

1)开启MySQL Binlog并重启MySQL

2)启动HDFS集群

[hadoop@linux100 flink-1.13.5]$ start-dfs.sh

3)启动Flink集群

[hadoop@linux100 flink-1.13.5]$ ./bin/start-cluster.sh

4) 打包flink程序jar,并上传到服务器

5)启动程序

[hadoop@linux100 flink-1.13.5]$ ./bin/flink run -c com.proj.other.FlinkCDCSql20220119 ./../jars/flink-v1_13_5-1.0-SNAPSHOT-jar-with-dependencies.jar

6)在MySQL的中对目标表进行添加、修改或者删除数据测试
Web界面查看HDFS的NameNode:http://linux100:9870/
Web界面查看flink_job:http://linux100:8081/

7)给当前的Flink程序创建Savepoint

[hadoop@linux100 flink-1.13.5]$ ./bin/flink savepoint 54e9288c149466b0915e8b3d8f067204 hdfs://linux100:8020/flink/save
# eg: ./bin/flink savepoint JobId hdfs://hadoop102:8020/flink/save

8)关闭程序以后从Savepoint重启程序

[hadoop@linux100 flink-1.13.5]$ ./bin/flink run -s hdfs://linux100:8020/flink/save/savepoint-54e928-86a029a5383a -c com.proj.other.FlinkCDCSql20220119 ./../jars/flink-v1_13_5-1.0-SNAPSHOT-jar-with-dependencies.jar

2、Maven dependency

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <parent>
        <artifactId>flink-soaring</artifactId>
        <groupId>com.proj</groupId>
        <version>1.0-SNAPSHOT</version>
    </parent>
    <modelVersion>4.0.0</modelVersion>
    <artifactId>flink-v1_13_5</artifactId>

    <properties>
        <flink.version>1.13.5</flink.version>
        <scala.binary.version>2.12</scala.binary.version>
        <kafka.version>2.2.0</kafka.version>
    </properties>

    <dependencies>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-core</artifactId>
            <version>1.13.5</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-java_2.12</artifactId>
            <version>1.13.5</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-jdbc_2.12</artifactId>
            <version>1.13.5</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-java</artifactId>
            <version>1.13.5</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-clients_2.12</artifactId>
            <version>1.13.5</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table-api-java-bridge_2.12</artifactId>
            <version>1.13.5</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table-common</artifactId>
            <version>1.13.5</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table-planner_2.12</artifactId>
            <version>1.13.5</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table-planner-blink_2.12</artifactId>
            <version>1.13.5</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table-planner-blink_2.12</artifactId>
            <version>1.13.5</version>
            <type>test-jar</type>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-scala_2.12</artifactId>
            <version>1.13.5</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-scala_2.12</artifactId>
            <version>1.13.5</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-kafka_2.12</artifactId>
            <version>1.13.5</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table-api-java</artifactId>
            <version>1.13.5</version>
            <scope>compile</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-json</artifactId>
            <version>1.13.5</version>
        </dependency>
<!--                <dependency>-->
<!--                    <groupId>com.alibaba.ververica</groupId>-->
<!--                    <artifactId>flink-connector-mysql-cdc</artifactId>-->
<!--                    <version>1.4.0</version>-->
<!--                </dependency>-->

        <!-- https://mvnrepository.com/artifact/com.ververica/flink-connector-mysql-cdc -->
        <dependency>
            <groupId>com.ververica</groupId>
            <artifactId>flink-connector-mysql-cdc</artifactId>
<!--            <version>2.1.1</version>-->
            <version>2.0.2</version>
        </dependency>
        <dependency>
            <groupId>com.google.code.gson</groupId>
            <artifactId>gson</artifactId>
            <version>2.8.6</version>
        </dependency>
        <dependency>
            <groupId>org.slf4j</groupId>
            <artifactId>slf4j-api</artifactId>
            <version>1.7.25</version>
        </dependency>
        <dependency>
            <groupId>org.slf4j</groupId>
            <artifactId>slf4j-log4j12</artifactId>
            <version>1.7.25</version>
        </dependency>
        <dependency>
            <groupId>log4j</groupId>
            <artifactId>log4j</artifactId>
            <version>1.2.17</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>3.1.3</version>
            <scope>provided</scope>
        </dependency>
    </dependencies>

    <build>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-assembly-plugin</artifactId>
                <version>3.3.0</version>
                <configuration>
                    <descriptorRefs>
                        <descriptorRef>
                            jar-with-dependencies
                        </descriptorRef>
                    </descriptorRefs>
                </configuration>
                <executions>
                    <execution>
                        <id>make-assembly</id>
                        <phase>package</phase>
                        <goals>
                            <goal>single</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>
</project>

3、DataStream Source

package com.proj.other;

import org.apache.flink.api.common.restartstrategy.RestartStrategies;
import org.apache.flink.streaming.api.CheckpointingMode;
import org.apache.flink.streaming.api.environment.CheckpointConfig;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.api.SqlDialect;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;

public class FlinkCDCSql20220119 {
    public static void main(String[] args) throws Exception {
        EnvironmentSettings environmentSettings = EnvironmentSettings.newInstance().useBlinkPlanner().inStreamingMode().build();
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env, environmentSettings);
        tableEnv.getConfig().setSqlDialect(SqlDialect.DEFAULT);
        env.enableCheckpointing(3000);

//        String path = "file:///Idea_Projects/workspace/flink-soaring/flink-v1_13_5/cp";
        String path = "hdfs://linux100:8020/ck/cp";
        env.getCheckpointConfig().setCheckpointStorage(path);

        //两个检查点之间间隔时间,默认是0,单位毫秒
        env.getCheckpointConfig().setMinPauseBetweenCheckpoints(500);

        //Checkpoint过程中出现错误,是否让整体任务都失败,默认值为0,表示不容忍任何Checkpoint失败
        env.getCheckpointConfig().setTolerableCheckpointFailureNumber(5);

        //Checkpoint是进行失败恢复,当一个 Flink 应用程序失败终止、人为取消等时,它的 Checkpoint 就会被清除
        //可以配置不同策略进行操作
        // DELETE_ON_CANCELLATION: 当作业取消时,Checkpoint 状态信息会被删除,因此取消任务后,不能从 Checkpoint 位置进行恢复任务
        // RETAIN_ON_CANCELLATION(多): 当作业手动取消时,将会保留作业的 Checkpoint 状态信息,要手动清除该作业的 Checkpoint 状态信息
        env.getCheckpointConfig().enableExternalizedCheckpoints(CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);

        //Flink 默认提供 Extractly-Once 保证 State 的一致性,还提供了 Extractly-Once,At-Least-Once 两种模式,
        // 设置checkpoint的模式为EXACTLY_ONCE,也是默认的,
        env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);

        //设置checkpoint的超时时间, 如果规定时间没完成则放弃,默认是10分钟
        env.getCheckpointConfig().setCheckpointTimeout(60000);

        //设置同一时刻有多少个checkpoint可以同时执行,默认为1就行,以避免占用太多正常数据处理资源
        env.getCheckpointConfig().setMaxConcurrentCheckpoints(1);

        //设置了重启策略, 作业在失败后能自动恢复,失败后最多重启3次,每次重启间隔10s
        env.setRestartStrategy(RestartStrategies.fixedDelayRestart(3, 10000));

        // 当有较新的 Savepoint 时,作业也会从 Checkpoint 处恢复
        env.getCheckpointConfig().setPreferCheckpointForRecovery(true);

        String productsSourceDDL = "CREATE TABLE products (\n" +
                "    id INT,\n" +
                "    name STRING,\n" +
                "    description STRING,\n" +
                "    PRIMARY KEY (id) NOT ENFORCED\n" +
                ") WITH (\n" +
                "    'connector' = 'mysql-cdc',\n" +
                "    'hostname' = '192.168.10.100',\n" +
                "    'port' = '3306',\n" +
                "    'username' = 'root',\n" +
                "    'password' = '123456',\n" +
                "    'database-name' = 'mydb',\n" +
                "    'table-name' = 'products'\n" +
                ")";

        String ordersSourceDDL = "CREATE TABLE orders (\n" +
                "   order_id INT,\n" +
                "   order_date TIMESTAMP(0),\n" +
                "   customer_name STRING,\n" +
                "   price DECIMAL(10, 5),\n" +
                "   product_id INT,\n" +
                "   order_status BOOLEAN,\n" +
                "   PRIMARY KEY (order_id) NOT ENFORCED\n" +
                ") WITH (\n" +
                "   'connector' = 'mysql-cdc',\n" +
                "   'hostname' = '192.168.10.100',\n" +
                "   'port' = '3306',\n" +
                "   'username' = 'root',\n" +
                "   'password' = '123456',\n" +
                "   'database-name' = 'mydb',\n" +
                "   'table-name' = 'orders'\n" +
                ")";

        String enriched_ordersSinkDDL = "CREATE TABLE enriched_orders (\n" +
                "   order_id INT,\n" +
                "   order_date TIMESTAMP(0),\n" +
                "   customer_name STRING,\n" +
                "   price DECIMAL(10, 5),\n" +
                "   product_id INT,\n" +
                "   order_status BOOLEAN,\n" +
                "   product_name STRING,\n" +
                "   product_description STRING,\n" +
                "   PRIMARY KEY (order_id) NOT ENFORCED\n" +
                ") WITH (\n" +
                "   'connector' = 'jdbc',\n" +
                "   'url' = 'jdbc:mysql://192.168.10.100:3306/mydb',\n" +
                "   'table-name' = 'enriched_orders',\n" +
                "   'password' = '123456',\n" +
                "   'username' = 'root'\n" +
                ")";

        String transformSql = "INSERT INTO enriched_orders\n" +
                "SELECT o.*,\n" +
                "       p.name,\n" +
                "       p.description\n" +
                "FROM orders AS o\n" +
                "LEFT JOIN products AS p ON o.product_id = p.id";

        tableEnv.executeSql(productsSourceDDL);
        tableEnv.executeSql(ordersSourceDDL);
        tableEnv.executeSql(enriched_ordersSinkDDL);

        tableEnv.executeSql(transformSql).print();
        System.out.println("=============================================================================");
        env.execute("sync-flink-cdc");
    }
}

  大数据 最新文章
实现Kafka至少消费一次
亚马逊云科技:还在苦于ETL?Zero ETL的时代
初探MapReduce
【SpringBoot框架篇】32.基于注解+redis实现
Elasticsearch:如何减少 Elasticsearch 集
Go redis操作
Redis面试题
专题五 Redis高并发场景
基于GBase8s和Calcite的多数据源查询
Redis——底层数据结构原理
上一篇文章      下一篇文章      查看所有文章
加:2022-03-10 22:36:15  更:2022-03-10 22:38:04 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/16 20:00:15-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码