IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 大数据 -> 【Hive】Hive 查询 -> 正文阅读

[大数据]【Hive】Hive 查询



环境准备

  • Hadoop 完全分布式(一主两从即可)
  • MySQL环境、Hive环境

一、环境准备

buyer_logbuyer_favorite 导入到 /data/hive-data 下:

在这里插入图片描述
创建卖家行为日志表,名为 buyer_log,包含ID(id)用户ID(buyer_id)时间(dt)地点(ip)操作类型(opt_type) 5 个字段,字符类型为 string,按照 “\t” 分割符:

hive> create table buyer_log
    > (id string,buyer_id string,dt string,ip string,opt_type string)
    > row format delimited fields terminated by '\t'
    > stored as textfile;
OK
Time taken: 1.752 seconds

创建买家收藏表,名为 buyer_favorite,包含 用户ID(buyer_id)商品ID(goods_id)时间(dt) 3 个字段,字符类型为 string,按照 “\t” 分割符:

hive> create table buyer_favorite
    > (buyer_id string,goods_id string,dt string)
    > row format delimited fields terminated by '\t'
    > stored as textfile;
OK
Time taken: 0.141 seconds

将本地的 /data/hive-data 下的上述两个文件中的数据导入到刚刚创建的两张表中:

hive> load data local inpath '/../home/data/hive-data/buyer_log' into table buyer_log;
Loading data to table db.buyer_log
OK
Time taken: 3.36 seconds

hive> load data local inpath '/../home/data/hive-data/buyer_favorite' into table buyer_favorite;
Loading data to table db.buyer_favorite
OK
Time taken: 0.413 seconds

返回顶部


二、Hive 查询

1、普通查询

查询 buyer_log 表中的全部字段,数据量大的时候,应当避免查询全部的数据。这里我们使用 limit 关键字进行限制查询前10条数据:

hive> select * from buyer_log limit 10;
OK
461	10181	2010-03-26 19:45:07	123.127.164.252	1
462	10262	2010-03-26 19:55:10	123.127.164.252	1
463	20001	2010-03-29 14:28:02	221.208.129.117	2
464	20001	2010-03-29 14:28:02	221.208.129.117	1
465	20002	2010-03-30 10:56:35	222.44.94.235	2
466	20002	2010-03-30 10:56:35	222.44.94.235	1
481	10181	2010-03-31 16:48:43	123.127.164.252	1
482	10181	2010-04-01 17:35:05	123.127.164.252	1
483	10181	2010-04-02 10:34:20	123.127.164.252	1
484	20001	2010-04-04 16:38:22	221.208.129.38	1
Time taken: 1.467 seconds, Fetched: 10 row(s)

返回顶部


2、别名查询

查询表 buyer_log 中的 id 字段 和 ip 字段,当多表连接字段较多时,常常使用别名:

hive> select b.id,b.ip from buyer_log b limit 10;
OK
461	123.127.164.252
462	123.127.164.252
463	221.208.129.117
464	221.208.129.117
465	222.44.94.235
466	222.44.94.235
481	123.127.164.252
482	123.127.164.252
483	123.127.164.252
484	221.208.129.38
Time taken: 0.108 seconds, Fetched: 10 row(s)

返回顶部


3、限定查询

查询表 buyer_log 中的 opt_type=1 的用户 ID(buyer_id)

hive> select buyer_id from buyer_log where opt_type=1 limit 10;
OK
10181
10262
20001
20002
10181
10181
10181
20001
10181
20021
Time taken: 0.361 seconds, Fetched: 10 row(s)

返回顶部


4、多表联合查询

两表或多表进行查询的时候,如通过 用户ID(buyer_id)连接表 buyer_logbuyer_favorite,查询表 buyer_logdt 字段和表 buyer_favoritegoods_id 字段,多表联合查询可以按需求查询多个表中不同字段:

hive> select l.dt,f.goods_id from buyer_log l,buyer_favorite f
    > where l.buyer_id = f.buyer_id 
    > limit 10;
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
Query ID = root_20220312204110_aa886926-12e1-4fc7-a0b7-2d21e4323941
Total jobs = 1
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/usr/local/src/hive/lib/log4j-slf4j-impl-2.6.2.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/usr/local/src/hadoop/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory]
2022-03-12 20:41:29	Starting to launch local task to process map join;	maximum memory = 477626368
2022-03-12 20:41:31	Dump the side-table for tag: 1 with group count: 682 into file: file:/usr/local/src/hive/tmp/ade490ef-9595-4235-9a9c-f58620ae753f/hive_2022-03-12_20-41-10_247_5739433956695466542-1/-local-10004/HashTable-Stage-3/MapJoin-mapfile01--.hashtable
2022-03-12 20:41:31	Uploaded 1 File to: file:/usr/local/src/hive/tmp/ade490ef-9595-4235-9a9c-f58620ae753f/hive_2022-03-12_20-41-10_247_5739433956695466542-1/-local-10004/HashTable-Stage-3/MapJoin-mapfile01--.hashtable (51658 bytes)
2022-03-12 20:41:31	End of local task; Time Taken: 1.91 sec.
Execution completed successfully
MapredLocal task succeeded
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_1647086333827_0001, Tracking URL = http://server:8088/proxy/application_1647086333827_0001/
Kill Command = /usr/local/src/hadoop/bin/hadoop job  -kill job_1647086333827_0001
Hadoop job information for Stage-3: number of mappers: 1; number of reducers: 0
2022-03-12 20:42:57,007 Stage-3 map = 0%,  reduce = 0%
2022-03-12 20:43:26,906 Stage-3 map = 100%,  reduce = 0%, Cumulative CPU 3.96 sec
MapReduce Total cumulative CPU time: 3 seconds 960 msec
Ended Job = job_1647086333827_0001
MapReduce Jobs Launched: 
Stage-Stage-3: Map: 1   Cumulative CPU: 3.96 sec   HDFS Read: 137752 HDFS Write: 487 SUCCESS
Total MapReduce CPU Time Spent: 3 seconds 960 msec
OK
2010-03-26 19:45:07	1000481
2010-03-26 19:45:07	1003185
2010-03-26 19:45:07	1002643
2010-03-26 19:45:07	1002994
2010-03-26 19:55:10	1003326
2010-03-29 14:28:02	1001597
2010-03-29 14:28:02	1001560
2010-03-29 14:28:02	1001650
2010-03-29 14:28:02	1002410
2010-03-29 14:28:02	1002989
Time taken: 138.793 seconds, Fetched: 10 row(s)

返回顶部


5、多表插入

多表插入指的是在同一条语句中,把读取的同一份数据插入到不同的表中,只需要扫描一遍数据即可完成所有表的插入操作,效率很高。我们使用买家行为日志 buyer_log 表作为插入表,创建 buyer_log1 和 buyer_log2 两表作为被插入表:

hive> create table buyer_log1 like buyer_log;
OK
Time taken: 1.199 seconds
hive> create table buyer_log2 like buyer_log;
OK
Time taken: 0.095 seconds

buyer_log 中的数据插入到 buyer_log1buyer_log2 中:

hive> from buyer_log
    > insert overwrite table buyer_log1 select *
    > insert overwrite table buyer_log2 select *;
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
Query ID = root_20220312205124_ae99b1d8-9ada-4358-9b64-9c3d61c6de76
Total jobs = 5
Launching Job 1 out of 5
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_1647086333827_0002, Tracking URL = http://server:8088/proxy/application_1647086333827_0002/
Kill Command = /usr/local/src/hadoop/bin/hadoop job  -kill job_1647086333827_0002
Hadoop job information for Stage-2: number of mappers: 1; number of reducers: 0
2022-03-12 20:51:55,535 Stage-2 map = 0%,  reduce = 0%
2022-03-12 20:52:14,808 Stage-2 map = 100%,  reduce = 0%, Cumulative CPU 2.05 sec
MapReduce Total cumulative CPU time: 2 seconds 50 msec
Ended Job = job_1647086333827_0002
Stage-5 is selected by condition resolver.
Stage-4 is filtered out by condition resolver.
Stage-6 is filtered out by condition resolver.
Stage-11 is selected by condition resolver.
Stage-10 is filtered out by condition resolver.
Stage-12 is filtered out by condition resolver.
Moving data to directory hdfs://192.168.64.183:9000/user/hive/warehouse/db.db/buyer_log1/.hive-staging_hive_2022-03-12_20-51-24_797_2412140504440982474-1/-ext-10000
Moving data to directory hdfs://192.168.64.183:9000/user/hive/warehouse/db.db/buyer_log2/.hive-staging_hive_2022-03-12_20-51-24_797_2412140504440982474-1/-ext-10002
Loading data to table db.buyer_log1
Loading data to table db.buyer_log2
MapReduce Jobs Launched: 
Stage-Stage-2: Map: 1   Cumulative CPU: 2.05 sec   HDFS Read: 14432909 HDFS Write: 28293834 SUCCESS
Total MapReduce CPU Time Spent: 2 seconds 50 msec
OK
Time taken: 51.7 seconds

返回顶部


6、多目录输出文件

将统一文件输出到本地不同文件中,提高效率,可以避免重复操作 from,将买家行为日志 buyer_log 表导入到本地 /data/hive-data/out1/data/hive-data/out2 中:

[root@server hive-data]# mkdir ./out1   //首先创建两个文件夹
[root@server hive-data]# mkdir ./out2
[root@server hive-data]# ll
总用量 23084
-rw-r--r--. 1 root root   102889 3月   6 10:52 buyer_favorite
-rw-r--r--. 1 root root 14427403 3月   6 10:52 buyer_log
-rw-r--r--. 1 root root     2164 3月   6 10:52 cat_group
-rw-r--r--. 1 root root   208799 3月   6 10:52 goods
-rw-r--r--. 1 root root    82421 3月   6 10:52 goods_visit
-rw-r--r--. 1 root root  8796085 3月   6 10:52 order_items
drwxr-xr-x. 2 root root       43 36 11:50 out
drwxr-xr-x. 2 root root        6 312 20:57 out1
drwxr-xr-x. 2 root root        6 312 20:57 out2
-rw-r--r--. 1 root root      287 3月   6 10:52 sydata.txt
hive> from buyer_log
    > insert overwrite local directory '/home/data/hive-data/out1' select *
    > insert overwrite local directory '/home/data/hive-data/out2' select *;
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
Query ID = root_20220312210028_a1b22b5b-255a-44b0-9b87-8c43ed291451
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_1647086333827_0003, Tracking URL = http://server:8088/proxy/application_1647086333827_0003/
Kill Command = /usr/local/src/hadoop/bin/hadoop job  -kill job_1647086333827_0003
Hadoop job information for Stage-2: number of mappers: 1; number of reducers: 0
2022-03-12 21:00:48,788 Stage-2 map = 0%,  reduce = 0%
2022-03-12 21:00:55,289 Stage-2 map = 100%,  reduce = 0%, Cumulative CPU 2.25 sec
MapReduce Total cumulative CPU time: 2 seconds 250 msec
Ended Job = job_1647086333827_0003
Moving data to local directory /home/data/hive-data/out1
Moving data to local directory /home/data/hive-data/out2
MapReduce Jobs Launched: 
Stage-Stage-2: Map: 1   Cumulative CPU: 2.25 sec   HDFS Read: 14432070 HDFS Write: 28293676 SUCCESS
Total MapReduce CPU Time Spent: 2 seconds 250 msec
OK
Time taken: 29.427 seconds

查看本地存储的文件:

[root@server hive-data]# ll ./out1
总用量 13816
-rw-r--r--. 1 root root 14146838 3月  12 21:00 000000_0
[root@server hive-data]# ll ./out2
总用量 13816
-rw-r--r--. 1 root root 14146838 3月  12 21:00 000000_0

返回顶部


  大数据 最新文章
实现Kafka至少消费一次
亚马逊云科技:还在苦于ETL?Zero ETL的时代
初探MapReduce
【SpringBoot框架篇】32.基于注解+redis实现
Elasticsearch:如何减少 Elasticsearch 集
Go redis操作
Redis面试题
专题五 Redis高并发场景
基于GBase8s和Calcite的多数据源查询
Redis——底层数据结构原理
上一篇文章      下一篇文章      查看所有文章
加:2022-03-13 21:52:47  更:2022-03-13 21:53:38 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/16 17:52:02-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码