IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 大数据 -> Influxdb和TDengine的写入性能测试(Java) -> 正文阅读

[大数据]Influxdb和TDengine的写入性能测试(Java)

Background

  • TDengine提供两种读写方式,这里我们使用JNI方式。
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
  • 这张图是之前用influxdata公司提供的工具测试的
    在这里插入图片描述

一、最终测试结果

  • 有一点需要注意,从后面我贴出的源码也可以看出,写入Influxdb的数据是在计时前准备好的,并且数据都是已经序列化过的数据;而TDengine的数据是边组织边写入,这在一定程度上也拖慢了写入速度,不过开篇我已经说了,我这里旨在大概了解下,不做科学准确的性能对比测试哈(TDengine官方的测试对比更科学可靠)。
  • 无论是写入还是查询,Influxdb的cpu负载和内存占用会随着数据量的增加而增加,例如一亿条数要5秒左右出结果,而TDengine查询几乎秒出,cpu负载和内存占用都较低且波动不大。

在这里插入图片描述

在这里插入图片描述


在这里插入图片描述

在这里插入图片描述

二、测试基本环境

kv
osCentos7.9
cpu12 Intel? Core? i7-8700 CPU @ 3.20GHz
osCentos7.9
内存16g
Influxdb1.6.1
TDengine2.4.0.12

三、测试源码

  • maven 依赖
		<dependency>
            <groupId>com.taosdata.jdbc</groupId>
            <artifactId>taos-jdbcdriver</artifactId>
            <version>2.0.37</version>
        </dependency>
package com.cloudansys.test;

import cn.hutool.core.util.NumberUtil;
import cn.hutool.core.util.StrUtil;
import com.taosdata.jdbc.TSDBDriver;
import com.taosdata.jdbc.TSDBPreparedStatement;
import okhttp3.OkHttpClient;
import org.influxdb.InfluxDB;
import org.influxdb.InfluxDBFactory;
import org.influxdb.dto.Point;

import java.sql.*;
import java.util.ArrayList;
import java.util.List;
import java.util.Properties;
import java.util.concurrent.TimeUnit;

public class TestWriteRead {

    public static void main(String[] args) throws Exception {
        int factor = 2000;
        writeToTDengine(factor);
//        writeToInfluxDB(factor);
//        queryTDengine();
    }

    /**
     * 写入 tdengine
     */
    private static void writeToTDengine(int factor) throws Exception {
        Connection conn = getTdConn();
        int numOfTid = 100, ef = factor / 100, numOfRow = ef * 10000;
        int bf = 2000, count = numOfRow / bf, left = factor;
        String sql = "insert into ? using st_wy tags(?) values(?,?,?,?)";
        TSDBPreparedStatement pStmt = conn.prepareStatement(sql).unwrap(TSDBPreparedStatement.class);
        long startTime = System.currentTimeMillis();
        System.out.println("=======================<写入开始>=======================");
        for (int i = 1; i <= numOfTid; i++) {
            long current = System.currentTimeMillis();
            for (int j = 0; j < count; j++) {
                // set table name
                pStmt.setTableName("t_" + i);
                // set tags
                pStmt.setTagInt(0, i);
                // set columns
                ArrayList<Long> tsList = new ArrayList<>();
                for (int k = 0; k < bf; k++) {
                    tsList.add(current++);
                }
                // set timestamp
                pStmt.setTimestamp(0, tsList);
                // set v1 v2 v3
                pStmt.setDouble(1, ranValues(bf));
                pStmt.setDouble(2, ranValues(bf));
                pStmt.setDouble(3, ranValues(bf));
                // add column
                pStmt.columnDataAddBatch();
                // execute column
                pStmt.columnDataExecuteBatch();
            }
            left -= ef;
            System.out.print("\r" + factor + "万条数据写入中:" + left + " 万条");
        }
        System.out.println("\n=======================<写入结束>=======================");
        long endTime = System.currentTimeMillis();
        System.out.println("总共耗时:" + (endTime - startTime) / 1000 + "s");
        conn.close();
    }

    /**
     * 初始化表信息 tdengine
     */
    private static void initSchema(Connection conn) throws Exception {
        Statement stmt = conn.createStatement();
        stmt.execute("create stable st_wy(ts timestamp, v1 double, v2 double, v3 double) tags(tid int);");
    }

    /**
     * 查询 tdengine
     */
    private static void queryTDengine() throws Exception {
        Connection conn = getTdConn();
        Statement stmt = conn.createStatement();
        String sql = "select * from t_1 limit 5;";
        ResultSet resultSet = stmt.executeQuery(sql);
        Timestamp ts;
        double v1, v2, v3;
        System.out.println("ts-v1-v2-v3");
        String template = "{}-{}-{}-{}";
        while (resultSet.next()) {
            ts = resultSet.getTimestamp(1);
            v1 = resultSet.getDouble("v1");
            v2 = resultSet.getDouble(3);
            v3 = resultSet.getDouble(4);
            System.out.println(StrUtil.format(template, ts, v1, v2, v3));
        }
        conn.close();
    }

    /**
     * 获取指定大小的随机数列表
     */
    private static ArrayList<Double> ranValues(int size) {
        ArrayList<Double> resList = new ArrayList<>();
        for (int i = 0; i < size; i++) {
            resList.add(NumberUtil.round(Math.random(), 3).doubleValue());
        }
        return resList;
    }

    /**
     * 写入 inflxudb
     */
    private static void writeToInfluxDB(int factor) {
        List<String> records = getRecords(factor);
        InfluxDB influxDB = getInfluxDB();
        long startTime = System.currentTimeMillis();
        System.out.println("\n=======================<写入开始>=======================");
        writeRecords(influxDB, records);
        System.out.println("\n=======================<写入结束>=======================");
        long endTime = System.currentTimeMillis();
        System.out.println("总共耗时:" + (endTime - startTime) / 1000 + "s");
        influxDB.close();
    }

    /**
     * 批量写入数据
     * 50=39
     * 100=37
     */
    private static void writeRecords(InfluxDB influxDB, List<String> records) {
        List<String> dataList = new ArrayList<>();
        int num = 0, batchFactor = 25, factor = records.size() / 10000;
        for (String record : records) {
            dataList.add(record);
            if (dataList.size() == batchFactor * 10000) {
                influxDB.write(dataList);
                dataList.clear();
                System.out.print("\r" + factor + "万条数据写入中:" + (factor - batchFactor * ++num) + " 万条");
            }
        }
    }

    /**
     * 获取指定条数(万条)的模拟数据
     */
    private static List<String> getRecords(int factor) {
        List<String> records = new ArrayList<>();
        Point.Builder pointBuilder = Point.measurement("wy");
        long curMillis = System.currentTimeMillis();
        int num = factor / 100, count = num * 10000;
        for (int i = 1; i <= 100; i++) {
            System.out.print("\r" + factor + "万条数据准备中:" + i * num + " 万条");
            for (int j = 1; j <= count; j++) {
                pointBuilder
                        .time(curMillis++, TimeUnit.MILLISECONDS)
                        .tag("tid", String.valueOf(i))
                        .addField("v1", NumberUtil.round(Math.random(), 3).doubleValue())
                        .addField("v2", NumberUtil.round(Math.random(), 3).doubleValue())
                        .addField("v3", NumberUtil.round(Math.random(), 3).doubleValue());
                records.add(pointBuilder.build().lineProtocol());
            }
        }
        return records;
    }

    /**
     * 获取 tdengine 连接
     */
    private static Connection getTdConn() throws Exception {
        Class.forName("com.taosdata.jdbc.TSDBDriver");
        // Class.forName("com.taosdata.jdbc.rs.RestfulDriver");
        String jdbcUrl = "jdbc:TAOS://elephant:6030/db_wlf?user=root&password=taosdata";
        // String jdbcUrl = "jdbc:TAOS-RS://elephant:6041/db_wlf?user=root&password=taosdata";
        Properties connProps = new Properties();
        connProps.setProperty(TSDBDriver.PROPERTY_KEY_CHARSET, "UTF-8");
        connProps.setProperty(TSDBDriver.PROPERTY_KEY_LOCALE, "en_US.UTF-8");
        connProps.setProperty(TSDBDriver.PROPERTY_KEY_TIME_ZONE, "UTC-8");
        return DriverManager.getConnection(jdbcUrl, connProps);
    }

    /**
     * 获取 influxdb 连接
     */
    private static InfluxDB getInfluxDB() {
        String serverURL = "http://elephant:8086";
        String username = "wlf";
        String password = "wlf@123";
        String database = "db_wlf";
        OkHttpClient.Builder clientBuilder = new OkHttpClient.Builder().readTimeout(100, TimeUnit.SECONDS);
        // 批大小(万条)
        int batchSize = 20;
        // 写间隔(ms)
        int interval = 1000;
        return InfluxDBFactory
                .connect(serverURL, username, password, clientBuilder)
                .setDatabase(database)
                .enableGzip();
        // 第一个是point的个数,第二个是时间,单位毫秒,第三个时间单位
//                .enableBatch(batchSize * 10000, interval, TimeUnit.MILLISECONDS);
    }
}

四、TDengineGUI

  • TDengineGUI这个工具界面看着挺素的,但是使用起来还是挺方便的。
  • 不过没有提供数据的导入和导出功能(官方命令行提供数据的导入和导出)。

在这里插入图片描述

  大数据 最新文章
实现Kafka至少消费一次
亚马逊云科技:还在苦于ETL?Zero ETL的时代
初探MapReduce
【SpringBoot框架篇】32.基于注解+redis实现
Elasticsearch:如何减少 Elasticsearch 集
Go redis操作
Redis面试题
专题五 Redis高并发场景
基于GBase8s和Calcite的多数据源查询
Redis——底层数据结构原理
上一篇文章      下一篇文章      查看所有文章
加:2022-03-15 22:37:16  更:2022-03-15 22:38:07 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/16 17:40:04-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码