IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 大数据 -> 6-Kafka原理 -> 正文阅读

[大数据]6-Kafka原理

Kafka原理

leader和follower

  • Kafka中的leader和follower是相对分区有意义,不是相对broker
  • Kafka在创建topic的时候,会尽量分配分区的leader在不同的broker中,其实就是负载均衡
  • leader职责:读写数据
  • follower职责:同步数据、参与选举(leader crash之后,会选举一个follower重新成为分区的leader
  • 注意和ZooKeeper区分
    • ZK的leader负责读、写,follower可以读取
    • Kafka的leader负责读写、follower不能读写数据(确保每个消费者消费的数据是一致的),Kafka一个topic有多个分区leader,一样可以实现数据操作的负载均衡

AR\ISR\OSR

  • AR表示一个topic下的所有副本
  • ISR:In Sync Replicas,正在同步的副本(可以理解为当前有几个follower是存活的)
  • OSR:Out of Sync Replicas,不再同步的副本
  • AR = ISR + OSR

leader选举

  • Controller:controller是kafka集群的老大,是针对Broker的一个角色

    • Controller是高可用的,是用过ZK来进行选举
  • Leader:是针对partition的一个角色

    • Leader是通过ISR来进行快速选举
  • 如果Kafka是基于ZK来进行选举,ZK的压力可能会比较大。例如:某个节点崩溃,这个节点上不仅仅只有一个leader,是有不少的leader需要选举。通过ISR快速进行选举。

  • leader的负载均衡

    • 如果某个broker crash之后,就可能会导致partition的leader分布不均匀,就是一个broker上存在一个topic下不同partition的leader
    • 通过以下指令,可以将leader分配到优先的leader对应的broker,确保leader是均匀分配的
    bin/kafka-leader-election.sh --bootstrap-server node1.itcast.cn:9092 --topic test --partition=2 --election-type preferred
    

Kafka读写流程

  • 写流程
    • 通过ZooKeeper找partition对应的leader,leader是负责写的
    • producer开始写入数据
    • ISR里面的follower开始同步数据,并返回给leader ACK
    • 返回给producer ACK
  • 读流程
    • 通过ZooKeeper找partition对应的leader,leader是负责读的
    • 通过ZooKeeper找到消费者对应的offset
    • 然后开始从offset往后顺序拉取数据
    • 提交offset(自动提交——每隔多少秒提交一次offset、手动提交——放入到事务中提交)

Kafka的物理存储

  • Kafka的数据组织结构
    • topic
    • partition
    • segment
      • .log数据文件
      • .index(稀疏索引)
      • .timeindex(根据时间做的索引)
  • 深入了解读数据的流程
    • 消费者的offset是一个针对partition全局offset
    • 可以根据这个offset找到segment段
    • 接着需要将全局的offset转换成segment的局部offset
    • 根据局部的offset,就可以从(.index稀疏索引)找到对应的数据位置
    • 开始顺序读取

消息传递的语义性

Flink里面有对应的每种不同机制的保证,提供Exactly-Once保障(二阶段事务提交方式)

  • At-most once:最多一次(只管把数据消费到,不管有没有成功,可能会有数据丢失)
  • At-least once:最少一次(有可能会出现重复消费)
  • Exactly-Once:仅有一次(事务性性的保障,保证消息有且仅被处理一次)

Kafka的消息不丢失

  • broker消息不丢失:因为有副本relicas的存在,会不断地从leader中同步副本,所以,一个broker crash,不会导致数据丢失,除非是只有一个副本。
  • 生产者消息不丢失:ACK机制(配置成ALL/-1)、配置0或者1有可能会存在丢失
  • 消费者消费不丢失:重点控制offset
    • At-least once:一种数据可能会重复消费
    • Exactly-Once:仅被一次消费

数据积压

  • 数据积压指的是消费者因为有一些外部的IO、一些比较耗时的操作(Full GC——Stop the world),就会造成消息在partition中一直存在得不到消费,就会产生数据积压
  • 在企业中,我们要有监控系统,如果出现这种情况,需要尽快处理。虽然后续的Spark Streaming/Flink可以实现背压机制,但是数据累积太多一定对实时系统它的实时性是有说影响的

数据清理&配额限速

  • 数据清理
    • Log Deletion(日志删除):如果消息达到一定的条件(时间、日志大小、offset大小),Kafka就会自动将日志设置为待删除(segment端的后缀名会以 .delete结尾),日志管理程序会定期清理这些日志
      • 默认是7天过期
    • Log Compaction(日志合并)
      • 如果在一些key-value数据中,一个key可以对应多个不同版本的value
      • 经过日志合并,就会只保留最新的一个版本
  • 配额限速
    • 可以限制Producer、Consumer的速率
    • 防止Kafka的速度过快,占用整个服务器(broker)的所有IO资源
  大数据 最新文章
实现Kafka至少消费一次
亚马逊云科技:还在苦于ETL?Zero ETL的时代
初探MapReduce
【SpringBoot框架篇】32.基于注解+redis实现
Elasticsearch:如何减少 Elasticsearch 集
Go redis操作
Redis面试题
专题五 Redis高并发场景
基于GBase8s和Calcite的多数据源查询
Redis——底层数据结构原理
上一篇文章      下一篇文章      查看所有文章
加:2022-03-22 20:40:57  更:2022-03-22 20:43:39 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/16 16:55:42-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码