说明
???最近浅学了一波狂神的redis教程,对redis学习记录做一个简单的总结。 redis五大数据类型: 字符串string、散列hash、列表list、集合set、有序集合zset
注意点
- redis的事务没有隔离级别的概念
- redis单挑命令是保证原子性的,但是事务不保证原子性
- 可以使用watch实现redis的乐观锁进行操作
redis持久化
RDB(redis database)
redis单独创建一个子进程进行持久化的操作,会先将数据写入到一个临时文件中,待持久化过程 都结束了,再用这个临时文件替换上次持久化好的文件。整个过程中,主进程是不进行任何IO操作的。 这就确保了极高的性能。如果需要进行大规模数据的恢复,且对于数据恢复的完整性不是非常敏感,那 RDB方式要比AOF方式更加的高效。RDB的缺点是最后一次持久化后的数据可能丢失。
触发机制
- save的规则满足的情况下,会自动触发rdb规则
- 执行 flushall 命令,也会触发我们的rdb规则!
- 退出redis,也会产生 rdb 文件!
AOF(Append Only File)
??以日志的形式来记录每个写操作,将Redis执行过的所有指令记录下来(读操作不记录),只许追加文件但不可以改写文件,redis启动之初会读取该文件重新构建数据,换言之,redis重启的话就根据日志文件的内容将写指令从前到后执行一次以完成数据的恢复工作. ??相对于数据文件aof远远大于rdb,修复速度比rdb慢;aof运行效率也慢,因此redis默认配置是rdb
性能比较
1.RDB 持久化方式能够在指定的时间间隔内对你的数据进行快照存储 2.AOF 持久化方式记录每次对服务器写的操作,当服务器重启的时候会重新执行这些命令来恢复原始 的数据,AOF命令以Redis 协议追加保存每次写的操作到文件末尾,Redis还能对AOF文件进行后台重 写,使得AOF文件的体积不至于过大。 3.只做缓存,如果你只希望你的数据在服务器运行的时候存在,你也可以不使用任何持久化 4.同时开启两种持久化方式 在这种情况下,当redis重启的时候会优先载入AOF文件来恢复原始的数据,因为在通常情况下AOF 文件保存的数据集要比RDB文件保存的数据集要完整。 RDB 的数据不实时,同时使用两者时服务器重启也只会找AOF文件,那要不要只使用AOF呢?作者 建议不要,因为RDB更适合用于备份数据库(AOF在不断变化不好备份),快速重启,而且不会有 AOF可能潜在的Bug,留着作为一个万一的手段。 5.性能建议
- 因为RDB文件只用作后备用途,建议只在Slave上持久化RDB文件,而且只要15分钟备份一次就够
了,只保留 save 900 1 这条规则。 - 如果Enable AOF ,好处是在最恶劣情况下也只会丢失不超过两秒数据,启动脚本较简单只load自
己的AOF文件就可以了,代价一是带来了持续的IO,二是AOF rewrite 的最后将 rewrite 过程中产 生的新数据写到新文件造成的阻塞几乎是不可避免的。只要硬盘许可,应该尽量减少AOF rewrite 的频率,AOF重写的基础大小默认值64M太小了,可以设到5G以上,默认超过原大小100%大小重 写可以改到适当的数值。 - 如果不Enable AOF ,仅靠 Master-Slave Repllcation 实现高可用性也可以,能省掉一大笔IO,也
减少了rewrite时带来的系统波动。代价是如果Master/Slave 同时倒掉,会丢失十几分钟的数据, 启动脚本也要比较两个 Master/Slave 中的 RDB文件,载入较新的那个,微博就是这种架构。
主从复制
主从复制的作用主要包括:
- 数据冗余:主从复制实现了数据的热备份,是持久化之外的一种数据冗余方式。
- 故障恢复:当主节点出现问题时,可以由从节点提供服务,实现快速的故障恢复;实际上是一种服务
的冗余。 - 负载均衡:在主从复制的基础上,配合读写分离,可以由主节点提供写服务,由从节点提供读服务
(即写Redis数据时应用连接主节点,读Redis数据时应用连接从节点),分担服务器负载;尤其是在写 少读多的场景下,通过多个从节点分担读负载,可以大大提高Redis服务器的并发量。 - 高可用(集群)基石:除了上述作用以外,主从复制还是哨兵和集群能够实施的基础,因此说主从复
制是Redis高可用的基础。
两种复制方式
全量复制:而slave服务在接收到数据库文件数据后,将其存盘并加载到内存中。 增量复制:Master 继续将新的所有收集到的修改命令依次传给slave,完成同步但是只要是重新连接master,一次完全同步(全量复制)将被自动执行! 我们的数据一定可以在从机中看到!
redis哨兵模式
哨兵模式是一种特殊的模式,首先Redis提供了哨兵的命令,哨兵是一个独立的进程,作为进程,它会独立运行。其原理是哨兵通过发送命令,等待Redis服务器响应,从而监控运行的多个Redis实例。 具体内容参见一个大佬的博文:redis哨兵 关于选主的几种策略:
- 比较从库的优先级
- 比较与主库的同步进度,参数为slave_repl_offset , 是累加的,也就是这个值越大,数据越新
- id越小 得分越高,每一个redis启动都会分配一个id号
Redis缓存穿透和雪崩
- 缓存穿透
缓存穿透的概念很简单,用户想要查询一个数据,发现redis内存数据库没有,也就是缓存没有命中,于是向持久层数据库查询。发现也没有,于是本次查询失败。当用户很多的时候,缓存都没有命中(秒杀!),于是都去请求了持久层数据库。这会给持久层数据库造成很大的压力,这时候就相当于出现了缓存穿透。 解决方案:
- 布隆过滤器,对查询的参数以hash形式存储,在控制层进行校验,不符合就丢弃
- 缓存一个空对象(会导致存在很多空值的键值对,造成缓存层和储存层的数据不一致)
- 缓存击穿
key非常热点,在不停的扛着大并发,大并发集中对这一个点进行访问,当这个key在失效的瞬间,持续的大并发就穿破缓存,直接请求数据库,当某个key在过期的瞬间,有大量的请求并发访问,这类数据一般是热点数据,由于缓存过期,会同时访问数据库来查询最新数据,并且回写缓存,会导使数据库瞬间压力过大。 解决方案.
- 设置热点数据永不过期
- 互斥加锁
- 缓存雪崩
缓存雪崩,是指在某一个时间段,缓存集中过期失效。Redis 宕机!产生雪崩的原因之一,比如在写本文的时候,马上就要到双十二零点,很快就会迎来一波抢购,这波商品时间比较集中的放入了缓存,假设缓存一个小时。那么到了凌晨一点钟的时候,这批商品的缓存就都 过期了。而对这批商品的访问查询,都落到了数据库上,对于数据库而言,就会产生周期性的压力波峰。于是所有的请求都会达到存储层,存储层的调用量会暴增,造成存储层也会挂掉的情况。 解决方案
- redis高可用异地多活
- 限流降级
- 数据预热
|