IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 大数据 -> 简述数据可视化制作流程 -> 正文阅读

[大数据]简述数据可视化制作流程

什么是数据可视化

数据可视化主要是透过图形化的手段,用图表清晰有效地传达和沟通信息。这个数据可视化的定义其实很简单,说白了就是通过图形化的方式把以往庞杂、繁乱的数据报表转化成简洁明了的可视化图表。

通过数据可视化制作出的图表,不再像传统报表只由数字组成,而是把巨量的数据融合归纳到直观的图表中,更为有效地展现企业信息,挖掘出背后的隐含的价值。

数据可视化有什么用

数据可视化就是为了解决传统数据分析的缺陷而诞生的。

?派可数据一站式BI可视化分析平台

  1. 数据可视化让数据更容易被人接受消化。和纯粹的数据相比,图表所展现的图形会更加直观,更容易理清信息之间的关系,保证大脑不会被无关的数据干扰,导致出现错误。
  2. 数据可视化能够更直接的表现趋势。在实际的数据分析工作中,一般需求最多的报表内容就是判断某项业务或企业的发展趋势,而趋势是一个动态的过程,满是数字的数据报表很难展现这一过程,可视化数据报表只需折线图、柱形图等就可以轻易的实现。
  3. 数据可视化可以用来复盘、预测。数据报表最大的问题就是它只有数据,使用者很难在脑海里理清这些数据之间的逻辑关系,这就导致复盘、预测这种需要明晰业务逻辑的活动就无法完成。
  4. 数据可视化可以完成更加深入的分析。可视化所支持的图表类型非常丰富,还可以使用联动、钻取等功能将不同的图表之间产生联系,这就让分析人员可以直接在一张图表上完成各种复杂的分析。

怎么做数据可视化

能够完成数据可视化的工具有很多,目前主流使用的有两种,分别是个人用户较多的可视化工具以及企业客户偏多的商业智能BI工具。

可视化工具的优点就是更加的轻量化,甚至可以直接通过在线网页完成简单图表的制作,但一般只能通过手动输入数据的方式制作,也会有各种限制,比如水印、限制组件、设置上限等等。

?派可数据一站式BI可视化分析平台

商业智能BI功能则完善得多,它可以直接连接企业的业务数据库,把这些业务数据清洗加工之后放到统一的数据仓库中。等到使用的时候就可以直接加载,实现自动化,只需要简单的拖拉拽就可以制作各种复杂的图表。

1.确认需求

数据可视化是为了解决问题而制作出来的,所以实际制作分析的过程中必须紧贴企业业务流程,了解业务指标、属于什么专业方向的内容,最大程度地提升数据分析的准确性,提高图表展现信息的质量。

接到数据可视化需求之后,我们必须要先清楚图表制作完成后受众对象是谁,对项目做一个初步的规划方案,把需求对象要解决的问题、想要看到的信息以及关键点摸清。

如果可以,最好再和需求对象对接一下,确定规划没有问题,这里一定要重视,规划的数据方向如果不是对方想要的,那时候的努力只是在浪费自己的时间精力,甚至有可能被要求推倒重来。

2.准备数据

数据可视化,千万不能忘了数据。不管前期规划再好,业务指标和需求之间的关系再贴合,没有数据你什么也分析不了。

?派可数据一站式BI可视化分析平台

数据决定了你图表可以展现的信息,也决定了你要进行的分析流程,所以一定要提前到数据仓库中查看是否有自己需要的业务数据。如果没有就要及时寻找,看看对方是否能够临时填报、补录数据,增加数据的源头。

下一步就要把这些确认好的数据跟之前规划的指标核对,将这些不同数据进行关联,思考数据分析中可能会使用到的关键信息,把整理过的数据放到备用表单中。

3.选择图表

图表的选择直接关系到可视化的呈现效果,一个合适的图表能够把数据之间的联系转化为直观的信息,相反错误的图表可能会将需求对象引向错误的方向。

数据可视化分析人员必须了解所有主流的图表类型,知道每个图表适合做哪些分析,能够展现哪种类型的信息,举个例子,折线图、柱形图等能够轻易的展现事物的发展趋势,但如果你把某段时间销售数量变化趋势呈现在饼图上,那这个图表就没有任何意义了。

4.数据可视化分析

在数据分析过程中,很多新手会有一个误区,经常会把各种各样的可视化图表装满几个屏幕,认为这样就可以把所有信息直观的展示给用户。实际上,用户并不需要那么多内容,相比复杂的信息展示,他们往往会更喜欢一目了然的内容设计,一眼就能看到关键信息。

?派可数据一站式BI可视化分析平台

此外,整个可视化图表页面中,色彩不宜太过丰富,颜色最好也不要太过鲜艳,把色彩对比强烈的颜色放到关键信息,用清晰的逻辑去呈现变化,突出重点部分,使用户产生更好的体验,这才是他们最希望看到的。

最后,回到数据分析本身,分析人员可以选择为制作完成的可视化图表附上自己从业务逻辑思考的信息,帮助用户更好的分辨图表展现的意义。

  大数据 最新文章
实现Kafka至少消费一次
亚马逊云科技:还在苦于ETL?Zero ETL的时代
初探MapReduce
【SpringBoot框架篇】32.基于注解+redis实现
Elasticsearch:如何减少 Elasticsearch 集
Go redis操作
Redis面试题
专题五 Redis高并发场景
基于GBase8s和Calcite的多数据源查询
Redis——底层数据结构原理
上一篇文章      下一篇文章      查看所有文章
加:2022-04-01 00:08:39  更:2022-04-01 00:09:39 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/28 8:35:57-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码