| |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
-> 大数据 -> redis为什么快? -> 正文阅读 |
|
[大数据]redis为什么快? |
目录 一、Redis整体功能全景图可以围绕两个纬度展开,分别是: 1、应用纬度 缓存使用、集群运用、数据结构的巧妙使用 2、系统纬度 可以归类为三高
二、Redis 为什么快?? 根据官方数据,Redis 的 QPS 可以达到约 100000(每秒请求数),有兴趣的可以参考官方的基准程序测试《How fast is Redis?》,地址:https://redis.io/topics/benchmarks ? 横轴是连接数,纵轴是 QPS。此时,这张图反映了一个数量级,希望大家在面试的时候可以正确的描述出来,不要问你的时候,你回答的数量级相差甚远! 1、完全基于内存实现Redis 是基于内存的数据库,跟磁盘数据库相比,完全吊打磁盘的速度。对于磁盘数据库来说,首先要将数据通过 IO 操作读取到内存里。 没错,不论读写操作都是在内存上完成的,我们分别对比下内存操作与磁盘操作的差异。 磁盘调用栈图 ? 内存操作: 内存直接由 CPU 控制,也就是 CPU 内部集成的内存控制器,所以说内存是直接与 CPU 对接,享受与 CPU 通信的最优带宽。 Redis 将数据存储在内存中,读写操作不会因为磁盘的 IO 速度限制,所以速度飞一般的感觉! 最后以一张图量化系统的各种延时时间(部分数据引用 Brendan Gregg) ? 2、高效的数据结构MySQL 为了提高检索速度使用了 B+ Tree 数据结构,所以 Redis 速度快应该也跟数据结构有关。 这里所说的数据结构并不是 Redis 提供给我们使用的 5 种数据类型:String、List、Hash、Set、SortedSet。 在 Redis 中,常用的 5 种数据类型和应用场景如下:
为了追求速度,不同数据类型使用不同的数据结构速度才得以提升。每种数据类型都有一种或者多种数据结构来支撑,底层数据结构有 6 种。 ? 1)Redis hash表 Redis 整体就是一个哈希表来保存所有的键值对,无论数据类型是 5 种的任意一种。哈希表,本质就是一个数组,每个元素被叫做哈希桶,不管什么数据类型,每个桶里面的 entry 保存着实际具体值的指针。 ? 整个数据库就是一个全局哈希表,而哈希表的时间复杂度是 O(1),只需要计算每个键的哈希值,便知道对应的哈希桶位置,定位桶里面的 entry 找到对应数据,这个也是 Redis 快的原因之一。 那 Hash 冲突怎么办? 当写入 Redis 的数据越来越多的时候,哈希冲突不可避免,会出现不同的 key 计算出一样的哈希值。 Redis 通过链式哈希解决冲突:也就是同一个 桶里面的元素使用链表保存。但是当链表过长就会导致查找性能变差的可能,所以 Redis 为了追求快,使用了两个全局哈希表。用于 rehash 操作,增加现有的哈希桶数量,减少哈希冲突。 开始默认使用 hash 表 1 保存键值对数据,hash 2 此刻没有分配空间。当数据越来多触发 rehash 操作,则执行以下操作:
值得注意的是,将 hash 表 1 的数据重新映射到 hash 表 2 的过程中并不是一次性的,这样会造成 Redis 阻塞,无法提供服务。 而是采用了渐进式 rehash,每次处理客户端请求的时候,先从 hash 表 1 中第一个索引开始,将这个位置的 所有数据拷贝到 hash 表 2 中,就这样将 rehash 分散到多次请求过程中,避免耗时阻塞。 2)SDS 简单动态字符 Redis 是用 C 语言实现的,为啥还重新搞一个 SDS 动态字符串呢? 字符串结构使用最广泛,通常我们用于缓存登陆后的用户信息,key = userId,value = 用户信息 JSON 序列化成字符串。 C 语言中字符串的获取 「string」的长度,要从头开始遍历,直到 「\0」为止,Redis 作为唯快不破的男人是不能忍受的。 C 语言字符串结构与 SDS 字符串结构对比图如下所示: ? SDS 与 C 字符串区别:
C 语言字符串布吉路长度信息,需要遍历整个字符串时间复杂度为 O(n),C 字符串遍历时遇到 '\0' 时结束。 SDS 中 len 保存这字符串的长度,O(1) 时间复杂度。
SDS 被修改后,程序不仅会为 SDS 分配所需要的必须空间,还会分配额外的未使用空间。 分配规则如下:如果对 SDS 修改后,len 的长度小于 1M,那么程序将分配和 len 相同长度的未使用空间。举个例子,如果 len=10,重新分配后,buf 的实际长度会变为 10(已使用空间)+10(额外空间)+1(空字符)=21。如果对 SDS 修改后 len 长度大于 1M,那么程序将分配 1M 的未使用空间。
当对 SDS 进行缩短操作时,程序并不会回收多余的内存空间,而是使用 free 字段将这些字节数量记录下来不释放,后面如果需要 append 操作,则直接使用 free 中未使用的空间,减少了内存的分配。
在 Redis 中不仅可以存储 String 类型的数据,也可能存储一些二进制数据。 二进制数据并不是规则的字符串格式,其中会包含一些特殊的字符如 '\0',在 C 中遇到 '\0' 则表示字符串的结束,但在 SDS 中,标志字符串结束的是 len 属性。 3)zipList 压缩列表 压缩列表是 List 、hash、 sorted Set 三种数据类型底层实现之一。 当一个列表只有少量数据的时候,并且每个列表项要么就是小整数值,要么就是长度比较短的字符串,那么 Redis 就会使用压缩列表来做列表键的底层实现。 ziplist 是由一系列特殊编码的连续内存块组成的顺序型的数据结构,ziplist 中可以包含多个 entry 节点,每个节点可以存放整数或者字符串。 ziplist 在表头有三个字段 zlbytes、zltail 和 zllen,分别表示列表占用字节数、列表尾的偏移量和列表中的 entry 个数;压缩列表在表尾还有一个 zlend,表示列表结束。
? 如果我们要查找定位第一个元素和最后一个元素,可以通过表头三个字段的长度直接定位,复杂度是 O(1)。而查找其他元素时,就没有这么高效了,只能逐个查找,此时的复杂度就是 O(N) 4)双端列表 Redis List 数据类型通常被用于队列、微博关注人时间轴列表等场景。不管是先进先出的队列,还是先进后出的栈,双端列表都很好的支持这些特性。 ? Redis 的链表实现的特性可以总结如下:
后续版本对列表数据结构进行了改造,使用 quicklist 代替了 ziplist 和 linkedlist。 quicklist 是 ziplist 和 linkedlist 的混合体,它将 linkedlist 按段切分,每一段使用 ziplist 来紧凑存储,多个 ziplist 之间使用双向指针串接起来。 ? 这也是为何 Redis 快的原因,不放过任何一个可以提升性能的细节。 5)skipList 跳跃表 sorted set 类型的排序功能便是通过「跳跃列表」数据结构来实现。 跳跃表(skiplist)是一种有序数据结构,它通过在每个节点中维持多个指向其他节点的指针,从而达到快速访问节点的目的。 跳跃表支持平均 O(logN)、最坏 O(N)复杂度的节点查找,还可以通过顺序性操作来批量处理节点。 跳表在链表的基础上,增加了多层级索引,通过索引位置的几个跳转,实现数据的快速定位,如下图所示: ? 当需要查找 40 这个元素需要经历 三次查找。 6)整数数组(intset) 当一个集合只包含整数值元素,并且这个集合的元素数量不多时,Redis 就会使用整数集合作为集合键的底层实现。结构如下:
contents 数组是整数集合的底层实现:整数集合的每个元素都是 contents 数组的一个数组项(item),各个项在数组中按值的大小从小到大有序地排列,并且数组中不包含任何重复项。length 属性记录了整数集合包含的元素数量,也即是 contents 数组的长度。 7)合理的数据编码 Redis 使用对象(redisObject)来表示数据库中的键值,当我们在 Redis 中创建一个键值对时,至少创建两个对象,一个对象是用做键值对的键对象,另一个是键值对的值对象。 例如:我们执行 SET MSG XXX 时,键值对的键是一个包含了字符串“MSG“的对象,键值对的值对象是包含字符串"XXX"的对象。 redisObject
其中 type 字段记录了对象的类型,包含字符串对象、列表对象、哈希对象、集合对象、有序集合对象。 对于每一种数据类型来说,底层的支持可能是多种数据结构,什么时候使用哪种数据结构,这就涉及到了编码转化的问题。 那我们就来看看,不同的数据类型是如何进行编码转化的: String:存储数字的话,采用 int 类型的编码,如果是非数字的话,采用 raw 编码; List:List 对象的编码可以是 ziplist 或 linkedlist,字符串长度 < 64 字节且元素个数 < 512 使用 ziplist 编码,否则转化为 linkedlist 编码; 注意:这两个条件是可以修改的,在 redis.conf 中:
Hash:Hash 对象的编码可以是 ziplist 或 hashtable。 当 Hash 对象同时满足以下两个条件时,Hash 对象采用 ziplist 编码:
否则就是 hashtable 编码。 Set:Set 对象的编码可以是 intset 或 hashtable,intset 编码的对象使用整数集合作为底层实现,把所有元素都保存在一个整数集合里面。 保存元素为整数且元素个数小于一定范围使用 intset 编码,任意条件不满足,则使用 hashtable 编码; Zset:Zset 对象的编码可以是 ziplist 或 zkiplist,当采用 ziplist 编码存储时,每个集合元素使用两个紧挨在一起的压缩列表来存储。 Ziplist 压缩列表第一个节点存储元素的成员,第二个节点存储元素的分值,并且按分值大小从小到大有序排列。 当 Zset 对象同时满足一下两个条件时,采用 ziplist 编码
如果不满足以上条件的任意一个,ziplist 就会转化为 zkiplist 编码。注意:这两个条件是可以修改的,在 redis.conf 中:
? 3、单线程模型为什么 Redis 是单线程的而不用多线程并行执行充分利用 CPU 呢? 我们要明确的是:Redis 的单线程指的是 Redis 的网络 IO 以及键值对指令读写是由一个线程来执行的。?对于 Redis 的持久化、集群数据同步、异步删除等都是其他线程执行。 至于为啥用单线程,我们先了解多线程有什么缺点。 多线程的弊端: 使用多线程,通常可以增加系统吞吐量,充分利用 CPU 资源。 但是,使用多线程后,没有良好的系统设计,可能会出现如下图所示的场景,增加了线程数量,前期吞吐量会增加,再进一步新增线程的时候,系统吞吐量几乎不再新增,甚至会下降! ? 在运行每个任务之前,CPU 需要知道任务在何处加载并开始运行。也就是说,系统需要帮助它预先设置 CPU 寄存器和程序计数器,这称为 CPU 上下文。 这些保存的上下文存储在系统内核中,并在重新计划任务时再次加载。这样,任务的原始状态将不会受到影响,并且该任务将看起来正在连续运行。 切换上下文时,我们需要完成一系列工作,这是非常消耗资源的操作。 另外,当多线程并行修改共享数据的时候,为了保证数据正确,需要加锁机制就会带来额外的性能开销,面临的共享资源的并发访问控制问题。 引入多线程开发,就需要使用同步原语来保护共享资源的并发读写,增加代码复杂度和调试难度。 单线程又什么好处?
单线程是否没有充分利用 CPU 资源呢? 官方答案:因为 Redis 是基于内存的操作,CPU 不是 Redis 的瓶颈,Redis 的瓶颈最有可能是机器内存的大小或者网络带宽。既然单线程容易实现,而且 CPU 不会成为瓶颈,那就顺理成章地采用单线程的方案了。原文地址:https://redis.io/topics/faq。 4、I/O 多路复用模型Redis 采用 I/O 多路复用技术,并发处理连接。采用了 epoll + 自己实现的简单的事件框架。epoll 中的读、写、关闭、连接都转化成了事件,然后利用 epoll 的多路复用特性,绝不在 IO 上浪费一点时间。 在解释 IO 多虑复用之前我们先了解下基本 IO 操作会经历什么。 基本 IO 模型: 一个基本的网络 IO 模型,当处理 get 请求,会经历以下过程:
其中,bind/listen、accept、recv、parse 和 send 属于网络 IO 处理,而 get 属于键值数据操作。既然 Redis 是单线程,那么,最基本的一种实现是在一个线程中依次执行上面说的这些操作。 关键点就是?accept 和 recv 会出现阻塞,当 Redis 监听到一个客户端有连接请求,但一直未能成功建立起连接时,会阻塞在 accept() 函数这里,导致其他客户端无法和 Redis 建立连接。 类似的,当 Redis 通过 recv() 从一个客户端读取数据时,如果数据一直没有到达,Redis 也会一直阻塞在 recv()。 ? 阻塞的原因由于使用传统阻塞 IO ,也就是在执行 read、accept 、recv 等网络操作会一直阻塞等待。如下图所示: IO 多路复用 多路指的是多个 socket 连接,复用指的是复用一个线程。多路复用主要有三种技术:select,poll,epoll。epoll 是最新的也是目前最好的多路复用技术。 它的基本原理是,内核不是监视应用程序本身的连接,而是监视应用程序的文件描述符。 当客户端运行时,它将生成具有不同事件类型的套接字。在服务器端,I / O 多路复用程序(I / O 多路复用模块)会将消息放入队列(也就是 下图的 I/O 多路复用程序的 socket 队列),然后通过文件事件分派器将其转发到不同的事件处理器。 简单来说:Redis 单线程情况下,内核会一直监听 socket 上的连接请求或者数据请求,一旦有请求到达就交给 Redis 线程处理,这就实现了一个 Redis 线程处理多个 IO 流的效果。 select / epoll 提供了基于事件的回调机制,即针对不同事件的发生,调用相应的事件处理器。所以 Redis 一直在处理事件,提升 Redis 的响应性能。 ? Redis 线程不会阻塞在某一个特定的监听或已连接套接字上,也就是说,不会阻塞在某一个特定的客户端请求处理上。正因为此,Redis 可以同时和多个客户端连接并处理请求,从而提升并发性。 三、唯快不破的原理总结?
? |
|
|
上一篇文章 下一篇文章 查看所有文章 |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 | -2025/1/16 14:40:42- |
|
网站联系: qq:121756557 email:121756557@qq.com IT数码 |