IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 大数据 -> SPARK SQL中 Grouping sets转Expand怎么实现的(逻辑计划级别) -> 正文阅读

[大数据]SPARK SQL中 Grouping sets转Expand怎么实现的(逻辑计划级别)

背景

本文基于spark 3.1.2
之前在做bug调试的时候遇到了expand的问题,在此记录一下

分析

运行该sql:

create table test_a_pt(col1 int, col2 int,pt string) USING parquet PARTITIONED BY (pt);
insert into table test_a_pt values(1,2,'20220101'),(3,4,'20220101'),(1,2,'20220101'),(3,4,'20220101'),(1,2,'20220101'),(3,4,'20220101');
select count(*),col1 as alias
from test_a_pt
group by col1,col2
grouping sets (col1,col2)
order by col1,col2 ;

可以看到如下逻辑计划的变化(只截取grouping sets相关的):

=== Applying Rule org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations ===
 'Sort ['col1 ASC NULLS FIRST], true                                                                          'Sort ['col1 ASC NULLS FIRST], true
 +- 'GroupingSets [ArrayBuffer('col1), ArrayBuffer('col2)], ['col1, 'col2], ['col1, 'count(1) AS alias#221]   +- 'GroupingSets [ArrayBuffer('col1), ArrayBuffer('col2)], ['col1, 'col2], ['col1, 'count(1) AS alias#221]
!   +- 'UnresolvedRelation [test_table], [], false                                                               +- 'SubqueryAlias spark_catalog.default.test_table
!                                                                                                                   +- 'UnresolvedCatalogRelation `default`.`test_table`, [], false
   

对于GroupingSets里面的信息做一下解释:

'GroupingSets [ArrayBuffer('col1), ArrayBuffer('col2)], ['col1, 'col2], ['col1, 'count(1) AS alias#221]

  • *`*表示还未解析的计划,

  • [ArrayBuffer('col1), ArrayBuffer('col2)] 是grouping sets里面的两个值col1col2

  • ['col1, 'col2] 是group by后面的值col1col2

  • ['col1, 'count(1) AS alias#221] 是聚合表达式的值,也就是select后面的值 count(*),col1 as alias

接下来就是:
ResolveGroupingAnalytics计划:

06:49:07.323 WARN org.apache.spark.sql.catalyst.rules.PlanChangeLogger: 
=== Applying Rule org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveGroupingAnalytics ===
 'Sort ['col1 ASC NULLS FIRST], true                                                                                         'Sort ['col1 ASC NULLS FIRST], true
!+- 'GroupingSets [ArrayBuffer(col1#223), ArrayBuffer(col2#224)], [col1#223, col2#224], [col1#223, count(1) AS alias#221L]   +- Aggregate [col1#229, col2#230, spark_grouping_id#228L], [col1#229, count(1) AS alias#221L]
!   +- SubqueryAlias spark_catalog.default.test_table                                                                           +- Expand [List(col1#223, col2#224, pt#225, col1#226, null, 1), List(col1#223, col2#224, pt#225, null, col2#227, 2)], [col1#223, col2#224, pt#225, col1#229, col2#230, spark_grouping_id#228L]
!      +- Relation[col1#223,col2#224,pt#225] parquet                                                                               +- Project [col1#223, col2#224, pt#225, col1#223 AS col1#226, col2#224 AS col2#227]
!                                                                                                                                     +- SubqueryAlias spark_catalog.default.test_table
!                                                                                                                                        +- Relation[col1#223,col2#224,pt#225] parquet

代码自己可以去看,我们从逻辑来上分析:

'GroupingSets [ArrayBuffer(col1#223), ArrayBuffer(col2#224)], [col1#223, col2#224], [col1#223, count(1) AS alias#221L] 
                                        ||
                                        \/
 +- Aggregate [col1#229, col2#230, spark_grouping_id#228L], [col1#229, count(1) AS alias#221L]                                   
  +- Expand [List(col1#223, col2#224, pt#225, col1#226, null, 1), List(col1#223, col2#224, pt#225, null, col2#227, 2)], [col1#223, col2#224, pt#225, col1#229, col2#230, spark_grouping_id#228L]
   +- Project [col1#223, col2#224, pt#225, col1#223 AS col1#226, col2#224 AS col2#227]

把最重要的转换提取出来做解释:

+- Project [col1#223, col2#224, pt#225, col1#223 AS col1#226, col2#224 AS col2#227]
  • 前三个expression col1#223, col2#224, pt#225 是根据 Relation(也就是从表test_a_pt直接获取到的,和表的字段保持一致)

  • 后面的expression col1#223 AS col1#226, col2#224 AS col2#227 是根据grouping sets和group by的值整合过来的(并且会加上别名,取别名是为了Expand用的),如果没有group by 这个表达式才会取grouping sets的值,否则就取group by后面的值(目前spark 3.1.2的做法是group by的属性肯定包含了grouping sets里面的属性,SPARK-33229可以支持):

如:group by col1,col2 grouping sets (col1,col2) 
则取 col1,col2 

如:grouping sets (col1,col2) 
则取 col1,col2

对于Expand:

Expand [List(col1#223, col2#224, pt#225, col1#226, null, 1), List(col1#223, col2#224, pt#225, null, col2#227, 2)], [col1#223, col2#224, pt#225, col1#229, col2#230, spark_grouping_id#228L]

List(col1#223, col2#224, pt#225, col1#226, null, 1), List(col1#223, col2#224, pt#225, null, col2#227, 2) 这些是expand的输入expression,其中

  • List(col1#223, col2#224, pt#225, col1#226, null, 1) 中的
    col1#223, col2#224, pt#225 也是从表test_a_pt直接获取到的字段,和表的字段保持一致
    col1#226 是从 Project的col1#223 AS col1#226取到的(作为Expand的输入表达式),
    null 根据grouping sets的特性而增加的一行值(作为Expand的输入表达式)
    1 也是增加的一行值(作为Expand的输入表达式)
  • List(col1#223, col2#224, pt#225, null, col2#227, 2) 解释也和上面一样,只不过null的位置发生了变化,而1变成了2,这是为了做聚合的时候进行区分

[col1#223, col2#224, pt#225, col1#229, col2#230, spark_grouping_id#228L] 这些是expand的输出expression,其中

  • col1#223, col2#224, pt#225 和表test_a_pt的字段值一样
  • col1#229, col2#230, spark_grouping_id#228L 是expand做的的扩展字段,
    因为col1和col2的值可能为null,所以exprId和表test_a_pt不一致,
    spark_grouping_id#228L 纯属于虚拟字段

而且expand的输入字段是一个Seq(Seq),这在ExpandExec的时候,会进行row的倍数扩大,Seq里的元素有几个,就会扩展多少倍。

对于Aggregate

Aggregate [col1#229, col2#230, spark_grouping_id#228L], [col1#229, count(1) AS alias#221L]  

其中,

  • [col1#229, col2#230, spark_grouping_id#228L]就是把Expand的输出字段,按照这三个表达式进行group by 聚合
  • [col1#229, count(1) AS alias#221L] 是聚合表达式,包括聚合的部分字段和部分聚合函数,也就是select语句count(*),col1 as alias

至此Grouping sets 转Expand就分析完了。

  大数据 最新文章
实现Kafka至少消费一次
亚马逊云科技:还在苦于ETL?Zero ETL的时代
初探MapReduce
【SpringBoot框架篇】32.基于注解+redis实现
Elasticsearch:如何减少 Elasticsearch 集
Go redis操作
Redis面试题
专题五 Redis高并发场景
基于GBase8s和Calcite的多数据源查询
Redis——底层数据结构原理
上一篇文章      下一篇文章      查看所有文章
加:2022-04-01 00:08:40  更:2022-04-01 00:12:46 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/16 14:57:23-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码