IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 大数据 -> Hive 如何合理设置 Map 及 Reduce 数 -> 正文阅读

[大数据]Hive 如何合理设置 Map 及 Reduce 数

一、概述

1.通常情况下,作业会通过 input 的目录产生一个或者多个 map 任务。主要的决定因素有:input 的文件总个数,input 的文件大小,集群设置的文件块大小。

2.是不是 map 数越多越好?答案是否定的。如果一个任务有很多小文件(远远小于块大小128m),则每个小文件也会被当做一个块,用一个 map 任务来完成,而一个 map 任务启动和初始化的时间远远大于逻辑处理的时间,就会造成很大的资源浪费。而且,同时可执行的 map 数是受限的。

3.是不是保证每个 map 处理接近 128m 的文件块,就高枕无忧了?答案也是不一定。比如有一个 127m 的文件,正常会用一个 map 去完成,但这个文件只有一个或者两个小字段,却有几千万的记录,如果 map 处理的逻辑比较复杂,用一个 map任务去做,肯定也比较耗时。

针对上面的问题 2 和 3,我们需要采取两种方式来解决:即减少 map 数和增加 map 数;

二、实操

1.复杂文件增加 Map 数(对应概述的问题3)

当 input 的文件都很大,任务逻辑复杂,map 执行非常慢的时候,可以考虑增加 Map 数,来使得每个 map 处理的数据量减少,从而提高任务的执行效率。

增加 map 的方法为:根据公式:

computeSliteSize(Math.max(minSize,Math.min(maxSize,blocksize)))=blocksize=128M 

调整 maxSize 最大值,让 maxSize 最大值低于 blocksize 就可以增加 map 的个数。
案例实操:
1)执行查询

hive (default)> select count(*) from emp;
Hadoop job information for Stage-1: number of mappers: 1; number of
reducers: 1

2)设置最大切片值为 100 个字节

hive (default)> set mapreduce.input.fileinputformat.split.maxsize=100;
hive (default)> select count(*) from emp;
Hadoop job information for Stage-1: number of mappers: 6; number of
reducers: 1

2.小文件进行合并(对应概述的问题2)

对于概述中的问题2,我们对小文件进行合并分两种情景:

  • 读取数据时合并小文件
  • 生成数据时合并小文件

1)在 map 执行前合并小文件,以此来减少 map数:CombineHiveInputFormat 具有对小文件进行合并的功能(系统默认的格式)。HiveInputFormat 没有对小文件合并功能。

set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;

2)在 Map-Reduce 的任务结束时合并小文件的设置:

在 map-only 任务结束时合并小文件,默认 true

SET hive.merge.mapfiles = true;

在 map-reduce 任务结束时合并小文件,默认 false

SET hive.merge.mapredfiles = true;

合并文件的大小,默认 256M

SET hive.merge.size.per.task = 268435456;

当输出文件的平均大小小于该值时,启动一个独立的 map-reduce 任务进行文件 merge
?

SET hive.merge.smallfiles.avgsize = 16777216;

3.合理设置 Reduce 数

1)调整 reduce 个数方法一

(1)每个 Reduce 处理的数据量默认是 256MB
hive.exec.reducers.bytes.per.reducer=256000000
(2)每个任务最大的 reduce 数,默认为 1009
hive.exec.reducers.max=1009
(3)计算 reducer 数的公式
N=min(参数 2,总输入数据量/参数 1)

2)调整 reduce 个数方法二

在 hadoop 的 mapred-default.xml 文件中修改
设置每个 job 的 Reduce 个数
set mapreduce.job.reduces = 15;

3)reduce 个数并不是越多越好

  1. 过多的启动和初始化 reduce 也会消耗时间和资源;
  2. 另外,有多少个 reduce,就会有多少个输出文件,如果生成了很多个小文件,那么如果这些小文件作为下一个任务的输入,则也会出现小文件过多的问题;

在设置 reduce 个数的时候也需要考虑这两个原则:

  • 处理大数据量利用合适的 reduce 数;
  • 使单个 reduce 任务处理数据量大小要合适;
  大数据 最新文章
实现Kafka至少消费一次
亚马逊云科技:还在苦于ETL?Zero ETL的时代
初探MapReduce
【SpringBoot框架篇】32.基于注解+redis实现
Elasticsearch:如何减少 Elasticsearch 集
Go redis操作
Redis面试题
专题五 Redis高并发场景
基于GBase8s和Calcite的多数据源查询
Redis——底层数据结构原理
上一篇文章      下一篇文章      查看所有文章
加:2022-04-04 12:18:09  更:2022-04-04 12:18:22 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/24 4:20:52-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码