IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 大数据 -> ElasticSearch-SpringBoot中三种分页查询总结 -> 正文阅读

[大数据]ElasticSearch-SpringBoot中三种分页查询总结

目录

一、from+size 浅分页

DSL 查询方式

RestHighLevelClient 查询方式

二、scroll 深分页

DSL 查询方式

RestHighLevelClient 查询方式

三、search_after 深分页

DSL 查询方式

RestHighLevelClient 查询方式


一、from+size 浅分页

  1. 浅分页的原理很简单,就是查询前20条数据,然后截断前10条,只返回10-20的数据。这样其实白白浪费了前10条的查询
  2. es默认采用的是from+size形式,在深度分页的情况下,这种效率是非常低的,但是可以随机跳转页面
  3. es为了性能,会限制我们分页的深度,es目前支持最大的max_result_window = 10000,也就是from+size的大小不能超过10000

DSL 查询方式

GET demo_index/_search
{
  "query":{
    "match_all": {}
  },
  "from": 0,
  "size": 10,
  "sort": [
    {
      "id": {
        "order": "asc"
      },
      "publish_time": {
        "order": "asc"
      }
    }
  ]
}

注意:es是基于分片的,假设有3个分片,from=100,size=10。则会根据排序规则从3个分片中各取回100条数据数据,然后汇总成300条数据后选择最前边的10条数据

RestHighLevelClient 查询方式

    /**
     * @Description from+size浅分页查询
     * @create by meng
     */
    private List<SearchHit> docSearch(Date time, String title) {
        SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
        BoolQueryBuilder builder = QueryBuilders.boolQuery();
        builder.must(QueryBuilders.matchAllQuery())
                .filter(QueryBuilders.rangeQuery("publish_time").gt(time.getTime()));
        try {
            searchSourceBuilder.query(builder)
                    .sort("id", SortOrder.ASC)
                    .sort("publish_time", SortOrder.ASC)
                    .from(0)
                    .size(10);
            SearchRequest searchRequest = new SearchRequest("demo_index").source(searchSourceBuilder);
            SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT);
            SearchHit[] hits = searchResponse.getHits().getHits();
            if (hits.length > 0) {
                return Arrays.asList(hits);
            } else {
                return null;
            }
        } catch (IOException e) {
            log.error("doc分页查询异常:{} ", e);
        }
        return null;
    }

二、scroll 深分页

  1. from+size查询在10000-50000条数据(1000到5000页)以内的时候还是可以的,但是如果数据过多的话,就会出现深分页问题。为了这个问题,es提出了scroll滚动查询方式
  2. scroll滚动搜索,会在第一次搜索的时候,保存一个当下的快照。之后只会基于该快照提供数据搜索。在这个期间数据如果发生变动,是不会让用户看到的。推荐非实时处理大量数据的情况可以使用
  3. 不适用于有跳页的情景

DSL 查询方式

GET demo_index/_search?scroll=3m
{
  "query":{
    "match_all": {}
  },
  "from": 0,
  "size": 10,
  "sort": [
    {
      "id": {
        "order": "asc"
      },
      "publish_time": {
        "order": "asc"
      }
    }
  ]
}
  1. scroll=3m表示设置scroll_id保留3分钟可用
  2. 使用scroll必须要将from设置为0
  3. size决定后面每次调用_search搜索返回的数量

通过数据返回的_scroll_id读取下一页内容,每次请求将会读取下10条数据,直到数据读取完毕或者scroll_id保留时间截止:

GET _search/scroll
{
  "scroll_id":"mengliulUaGVuRmV0Y2g7NTsxMDk5NDpkUmpiR2FjOFNhNnlCM1ZDMWpWYnRRO==",
  "scroll": "3m"
}

注意:我们需要再次设置游标查询过期时间为3分钟,GET和POST请求均可,scroll是非常消耗资源的,所以当不需要scroll数据的时候,尽可能快的把scroll_id显式删除掉

清除指定的scroll_id:

DELETE _search/scroll/mengliulUaGVuRmV0Y2g7NTsxMDk5NDpkUmpiR2FjOFNhNnlCM1ZDMWpWYnRRO==

清除所有的scroll:

DELETE _search/scroll/_all

RestHighLevelClient 查询方式

    /**
     * @Description scroll 深分页
     * @create by meng
     */
    private void docSearch(Date time, String title) {
        List<SearchHit> searchHits = new ArrayList<>();
        SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
        BoolQueryBuilder builder = QueryBuilders.boolQuery();
        builder.must(QueryBuilders.matchAllQuery())
                .filter(QueryBuilders.rangeQuery("publish_time").gt(time.getTime()));
        try {
            searchSourceBuilder.query(builder)
                    .sort("id", SortOrder.ASC)
                    .sort("publish_time", SortOrder.ASC)
                    .from(0)
                    .size(10);
            SearchRequest searchRequest = new SearchRequest("demo_index").source(searchSourceBuilder);
            //失效时间为3min
            Scroll scroll = new Scroll(TimeValue.timeValueMinutes(3));
            //封存快照
            searchRequest.scroll(scroll);
            SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT);
            //计算总页数
            long totalCount = searchResponse.getHits().getTotalHits().value;
            int pageSize = (int) Math.ceil((float) totalCount / 2);
            //多次遍历分页,获取结果
            String scrollId = searchResponse.getScrollId();
            for (int i = 1; i <= pageSize; i++) {
                //获取scrollId
                SearchScrollRequest searchScrollRequest = new SearchScrollRequest(scrollId);
                searchScrollRequest.scroll(scroll);
                SearchResponse response = restHighLevelClient.scroll(searchScrollRequest, RequestOptions.DEFAULT);
                SearchHits hits = response.getHits();
                scrollId = response.getScrollId();
                Iterator<SearchHit> iterator = hits.iterator();
                while (iterator.hasNext()) {
                    SearchHit next = iterator.next();
                    searchHits.add(next);
                }
            }
        } catch (IOException e) {
            log.error("doc分页查询异常:{} ", e);
        }
    }

三、search_after 深分页

  1. 可以在实时数据的情况下深度分页
  2. 为了找每一页最后一条数据,每个文档必须有一个全局唯一值
  3. 不适用于有跳页的情景

DSL 查询方式

GET demo_index/_search?scroll=3m
{
  "query":{
    "match_all": {}
  },
  "from": 0,
  "size": 10,
  "sort": [
    {
      "id": {
        "order": "asc"
      },
      "publish_time": {
        "order": "asc"
      }
    }
  ]
}
  1. 使用search_after必须要将from设置为0
  2. 上边的DSL查询中id是唯一不重复字段,publish_time可能会重复

注意:查询结果会返回sort字段,我们在返回的结果集中,获取最后一条数据的sort属性值,提供给下次查询中search_after

GET demo_index/_search?scroll=3m
{
  "query":{
    "match_all": {}
  },
  "size": 10,
  "search_after": [
    1638374400000,
    "mengliu20211202"
  ],
  "sort": [
    {
      "id": {
        "order": "asc"
      },
      "publish_time": {
        "order": "asc"
      }
    }
  ]
}

RestHighLevelClient 查询方式

    /**
     * @Description search_after 深分页
     * @create by meng
     */
    private void docSearch(Date time, String title) {
        List<SearchHit> searchHits = new ArrayList<>();
        SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
        BoolQueryBuilder builder = QueryBuilders.boolQuery();
        builder.must(QueryBuilders.matchAllQuery())
                .filter(QueryBuilders.rangeQuery("publish_time").gt(time.getTime()));
        try {
            searchSourceBuilder.query(builder)
                    .sort("id", SortOrder.ASC)
                    .sort("publish_time", SortOrder.ASC)
                    .from(0)
                    .size(10);
            SearchRequest searchRequest = new SearchRequest("demo_index").source(searchSourceBuilder);
            SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT);
            SearchHit[] hits = searchResponse.getHits().getHits();
            //查询最后一个数据
            SearchHit result = hits[hits.length - 1];
            //分页查询下一页数据
            SearchSourceBuilder searchSourceBuilder2 = new SearchSourceBuilder();
            searchSourceBuilder2.query(builder)
                    .sort("id", SortOrder.ASC)
                    .sort("publish_time", SortOrder.ASC)
                    .size(10);
            //存储上一次分页的sort信息
            searchSourceBuilder2.searchAfter(result.getSortValues());
            SearchRequest searchRequest2 = new SearchRequest("demo_index").source(searchSourceBuilder2);
            SearchResponse searchResponse2 = restHighLevelClient.search(searchRequest2, RequestOptions.DEFAULT);
            SearchHit[] hits2 = searchResponse2.getHits().getHits();
        } catch (IOException e) {
            log.error("doc分页查询异常:{} ", e);
        }
    }

  大数据 最新文章
实现Kafka至少消费一次
亚马逊云科技:还在苦于ETL?Zero ETL的时代
初探MapReduce
【SpringBoot框架篇】32.基于注解+redis实现
Elasticsearch:如何减少 Elasticsearch 集
Go redis操作
Redis面试题
专题五 Redis高并发场景
基于GBase8s和Calcite的多数据源查询
Redis——底层数据结构原理
上一篇文章      下一篇文章      查看所有文章
加:2022-04-04 12:18:09  更:2022-04-04 12:19:08 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/16 14:58:52-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码