IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 大数据 -> 牛客网SQL刷题三-用户增长场景(某度信息流) -> 正文阅读

[大数据]牛客网SQL刷题三-用户增长场景(某度信息流)

SQL7 2021年11月每天的人均浏览文章时长

  • 数据
DROP TABLE IF EXISTS tb_user_log;
CREATE TABLE tb_user_log (
    id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
    uid INT NOT NULL COMMENT '用户ID',
    artical_id INT NOT NULL COMMENT '视频ID',
    in_time datetime COMMENT '进入时间',
    out_time datetime COMMENT '离开时间',
    sign_in TINYINT DEFAULT 0 COMMENT '是否签到'
) CHARACTER SET utf8 COLLATE utf8_bin;

INSERT INTO tb_user_log(uid, artical_id, in_time, out_time, sign_in) VALUES
  (101, 9001, '2021-11-01 10:00:00', '2021-11-01 10:00:31', 0),
  (102, 9001, '2021-11-01 10:00:00', '2021-11-01 10:00:24', 0),
  (102, 9002, '2021-11-01 11:00:00', '2021-11-01 11:00:11', 0),
  (101, 9001, '2021-11-02 10:00:00', '2021-11-02 10:00:50', 0),
  (102, 9002, '2021-11-02 11:00:01', '2021-11-02 11:00:24', 0);
  • 题目

    问题:计算2021年里有播放记录的每个视频的完播率(结果保留三位小数),并按完播率降序排序

    :视频完播率是指完成播放次数占总播放次数的比例。简单起见,结束观看时间与开始播放时间的差>=视频时长时,视为完成播放。

  • SQL

select date(in_time) dt,
round(sum((timestampdiff(second, in_time, out_time)))/ count(distinct uid), 1) used_time
from tb_user_log
where date_format(in_time, '%Y%m')= '202111'
and artical_id != 0
and timestampdiff(second, in_time, out_time) > 0
group by dt
order by used_time asc;

SQL8 每篇文章同一时刻最大在看人数

  • 数据
DROP TABLE IF EXISTS tb_user_log;
CREATE TABLE tb_user_log (
    id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
    uid INT NOT NULL COMMENT '用户ID',
    artical_id INT NOT NULL COMMENT '视频ID',
    in_time datetime COMMENT '进入时间',
    out_time datetime COMMENT '离开时间',
    sign_in TINYINT DEFAULT 0 COMMENT '是否签到'
) CHARACTER SET utf8 COLLATE utf8_bin;

INSERT INTO tb_user_log(uid, artical_id, in_time, out_time, sign_in) VALUES
  (101, 9001, '2021-11-01 10:00:00', '2021-11-01 10:00:11', 0),
  (102, 9001, '2021-11-01 10:00:09', '2021-11-01 10:00:38', 0),
  (103, 9001, '2021-11-01 10:00:28', '2021-11-01 10:00:58', 0),
  (104, 9002, '2021-11-01 11:00:45', '2021-11-01 11:01:11', 0),
  (105, 9001, '2021-11-01 10:00:51', '2021-11-01 10:00:59', 0),
  (106, 9002, '2021-11-01 11:00:55', '2021-11-01 11:01:24', 0),
  (107, 9001, '2021-11-01 10:00:01', '2021-11-01 10:01:50', 0);
  • 题目

    问题:计算各类视频的平均播放进度,将进度大于60%的类别输出。

    • 播放进度=播放时长÷视频时长*100%,当播放时长大于视频时长时,播放进度均记为100%。

    • 结果保留两位小数,并按播放进度倒序排序。

  • SQL

select artical_id,max(cnt) cnt from 
  (
  select artical_id,in_time,
  sum(cnt) over (partition by artical_id order by in_time,cnt desc) cnt
  -- 按照时间倒序是否可以???!!!
  from 
  (
    select 
     artical_id,in_time, 1 cnt
    from tb_user_log
    where 1=1
    and artical_id != 0
    union all
    select 
     artical_id,out_time, -1 cnt
    from tb_user_log
    where 1=1
    and artical_id != 0
    order by artical_id,in_time asc
    ) t
  ) t
group by artical_id
order by cnt desc ;

SQL9 2021年11月每天新用户的次日留存率

  • 数据
DROP TABLE IF EXISTS tb_user_log;
CREATE TABLE tb_user_log (
    id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
    uid INT NOT NULL COMMENT '用户ID',
    artical_id INT NOT NULL COMMENT '视频ID',
    in_time datetime COMMENT '进入时间',
    out_time datetime COMMENT '离开时间',
    sign_in TINYINT DEFAULT 0 COMMENT '是否签到'
) CHARACTER SET utf8 COLLATE utf8_bin;

INSERT INTO tb_user_log(uid, artical_id, in_time, out_time, sign_in) VALUES
  (101, 0, '2021-11-01 10:00:00', '2021-11-01 10:00:42', 1),
  (102, 9001, '2021-11-01 10:00:00', '2021-11-01 10:00:09', 0),
  (103, 9001, '2021-11-01 10:00:01', '2021-11-01 10:01:50', 0),
  (101, 9002, '2021-11-02 10:00:09', '2021-11-02 10:00:28', 0),
  (103, 9002, '2021-11-02 10:00:51', '2021-11-02 10:00:59', 0),
  (104, 9001, '2021-11-02 10:00:28', '2021-11-02 10:00:50', 0),
  (101, 9003, '2021-11-03 11:00:55', '2021-11-03 11:01:24', 0),
  (104, 9003, '2021-11-03 11:00:45', '2021-11-03 11:00:55', 0),
  (105, 9003, '2021-11-03 11:00:53', '2021-11-03 11:00:59', 0),
  (101, 9002, '2021-11-04 11:00:55', '2021-11-04 11:00:59', 0);
  • 题目

    问题:统计在有用户互动的最近一个月(按包含当天在内的近30天算,比如10月31日的近30天为10.2~10.31之间的数据)中,每类视频的转发量和转发率(保留3位小数)。

    :转发率=转发量÷播放量。结果按转发率降序排序。

  • SQL

with user as
  ( select uid,date(in_time) login_dt from tb_user_log
   union -- 多次登录需要去重
   select uid,date(out_time) login_dt from tb_user_log
   ) -- 将所有日期垒起来,都算是活跃的日期
select first_login_date,
round(sum(if(is_con=1,1,0))/count(distinct uid),2) is_con 
-- 登录+活跃的人数/唯一总人数=留存率
from (
  select u1.uid,u1.first_login_date ,u2.uid u2id,u2.login_dt,datediff(login_dt,first_login_date) is_con
    from(
      select uid,min(login_dt) first_login_date from user group by uid
      ) u1
    left join 
      (select uid,login_dt from user) u2 on u1.uid=u2.uid 
    where date_format(u1.first_login_date,'%Y-%m')='2021-11'
    -- 最小日期左外连所有日期,日期之差为1则为登录后第二天又活跃了
    )t
group by first_login_date
order by first_login_date asc;

 with user as
  ( select uid,date(in_time) login_dt from tb_user_log
   union -- 多次登录需要去重
   select uid,date(out_time) login_dt from tb_user_log
   ) -- 将所有日期垒起来,都算是活跃的日期
 select first_login_date,
round(count(u2id)/count(uid) ,2)
 -- 第二天登录旧用户数/第一天新用户数
 from
(
   select u1.uid,u1.first_login_date ,u2.uid u2id,u2.login_dt,datediff(login_dt,first_login_date) is_con
    from(
      select uid,min(login_dt) first_login_date from user group by uid
      ) u1
    left join 
      (select uid,login_dt from user) u2 on u1.uid=u2.uid  and u1.first_login_date=date_sub(u2.login_dt,interval 1 day)
      -- 增加连接匹配条件,第二天没登录的就为null了
    where date_format(u1.first_login_date,'%Y-%m')='2021-11'
    -- 最小日期左外连所有日期,日期之差为1则为登录后第二天又活跃了
)t
group by first_login_date
order by first_login_date;

 with user as
  ( select uid,date(in_time) login_dt from tb_user_log
   union -- 多次登录需要去重
   select uid,date(out_time) login_dt from tb_user_log
   ) -- 将所有日期垒起来,都算是活跃的日期
 select register_dt,
 sum(if(datediff(next_dt,register_dt)=1,1,0))/count(distinct uid)
 from (
  select
  uid,
  min(login_dt) over (partition by uid order by uid asc,login_dt asc) register_dt,
  lead(login_dt,1) over (partition by uid order by uid asc,login_dt asc) next_dt
  from user
  where date_format(login_dt,'%Y-%m')='2021-11'
)t
group by register_dt

SQL10 统计活跃间隔对用户分级结果

  • 数据
DROP TABLE IF EXISTS tb_user_log;
CREATE TABLE tb_user_log (
    id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
    uid INT NOT NULL COMMENT '用户ID',
    artical_id INT NOT NULL COMMENT '视频ID',
    in_time datetime COMMENT '进入时间',
    out_time datetime COMMENT '离开时间', 
    sign_in TINYINT DEFAULT 0 COMMENT '是否签到'
) CHARACTER SET utf8 COLLATE utf8_bin;

INSERT INTO tb_user_log(uid, artical_id, in_time, out_time, sign_in) VALUES
  (109, 9001, '2021-08-31 10:00:00', '2021-08-31 10:00:09', 0),
  (109, 9002, '2021-11-04 11:00:55', '2021-11-04 11:00:59', 0),
  (108, 9001, '2021-09-01 10:00:01', '2021-09-01 10:01:50', 0),
  (108, 9001, '2021-11-03 10:00:01', '2021-11-03 10:01:50', 0),
  (104, 9001, '2021-11-02 10:00:28', '2021-11-02 10:00:50', 0),
  (104, 9003, '2021-09-03 11:00:45', '2021-09-03 11:00:55', 0),
  (105, 9003, '2021-11-03 11:00:53', '2021-11-03 11:00:59', 0),
  (102, 9001, '2021-10-30 10:00:00', '2021-10-30 10:00:09', 0),
  (103, 9001, '2021-10-21 10:00:00', '2021-10-21 10:00:09', 0),
  (101, 0, '2021-10-01 10:00:00', '2021-10-01 10:00:42', 1);
  • 题目

    问题:统计活跃间隔对用户分级后,各活跃等级用户占比,结果保留两位小数,且按占比降序排序。

    • 用户等级标准简化为:忠实用户(近7天活跃过且非新晋用户)、新晋用户(近7天新增)、沉睡用户(近7天未活跃但更早前活跃过)、流失用户(近30天未活跃但更早前活跃过)。

    • 假设今****天就是数据中所有日期的最大值。

    • 近7天表示包含当天T的近7天,即闭区间[T-6, T]。

  • SQL

忠实用户(近7天活跃过且非新晋用户) 登录时间在近7天且注册时间在7天之前
 新晋用户(近7天新增) 注册时间在7天之内
 沉睡用户(近7天未活跃但更早前活跃过) 近7天没有登录,注册时间在7天之前
 流失用户(近30天未活跃但更早前活跃过) 近30天没有登录,注册时间在30天之前
 
 构造列表:当前所有用户id、注册时间、最后登录时间
 
 with user as
(
select uid,date(min(in_time)) register_dt,date(max(out_time)) latest_dt
 from tb_user_log 
group by uid
)
select u.uid,u.register_dt,
l1.in_time '忠实用户',
case
  when l1.in_time is null and l3.in_time is null and l4.in_time is null then l2.in_time else null
end '新晋用户',
case
  when l1.in_time is null and l2.in_time is null and l4.in_time is null then l3.in_time else null
end '沉睡用户',
case
  when l1.in_time is null and l2.in_time is null then l4.in_time else null
end  '流失用户'
from user u
left join tb_user_log l1 on u.uid=l1.uid and datediff('2021-11-04',register_dt) >=6 and l1.in_time >=date_sub('2021-11-04',interval 6 day)
left join tb_user_log l2 on u.uid=l2.uid and datediff('2021-11-04',register_dt) <=6 
left join tb_user_log l3 on u.uid=l3.uid and datediff('2021-11-04',register_dt) >=6 and l3.in_time < date_sub('2021-11-04',interval 6 day)
left join tb_user_log l4 on u.uid=l4.uid and datediff('2021-11-04',register_dt) >=29 and l4.in_time < date_sub('2021-11-04',interval 29 day)
;

 忠实用户(近7天活跃过且非新晋用户) 登录时间在近7天且注册时间在7天之前
 新晋用户(近7天新增) 注册时间在7天之内
 沉睡用户(近7天未活跃但更早前活跃过) 近7天没有登录,注册时间在7天之前
 流失用户(近30天未活跃但更早前活跃过) 近30天没有登录,注册时间在30天之前
 
-- left 连接可能会存在重复登录的数据
 with user as
(
select uid,date(min(in_time)) register_dt,date(max(out_time)) latest_dt
 from tb_user_log 
group by uid
)
  select u.uid,u.register_dt,
  l1.in_time '7day_old',
  l2.in_time '7day_new',
  l3.in_time '7day_login',
  l4.in_time '30_login'
  from user u
  left join tb_user_log l1 on u.uid=l1.uid 
  and u.register_dt < date_sub('2021-11-04',interval 6 day) -- 注册时间在7天之前
  and l1.in_time >=date_sub('2021-11-04',interval 6 day) -- 近7天有登录
  left join tb_user_log l2 on u.uid=l2.uid 
  and datediff('2021-11-04',register_dt) <=6 -- 近7天新进用户
  left join tb_user_log l3 on u.uid=l3.uid 
  and u.latest_dt < date_sub('2021-11-04',interval 6 day) --  最后登录日期在7天之内
  and u.latest_dt >= date_sub('2021-11-04',interval 29 day) -- 30天前没有登录过
  left join tb_user_log l4 on u.uid=l4.uid 
  and u.latest_dt <= date_sub('2021-11-04',interval 29 day); -- 最后登录日期在30天之前
 
 with user as
(
select uid,date(min(in_time)) register_dt,date(max(out_time)) latest_dt
 from tb_user_log 
group by uid
)
select grade,round(count(grade)/(select count(*) from user limit 1),2) ratio 
from (
  select 
  uid,
  case
    when 7day_old is not null then '忠实用户'
    when 7day_new is not null then '新晋用户'
    when 7day_login is not null then '沉睡用户'
    when 30_login is not null then '流失用户'
  end grade
  from (
    select uid,max(7day_old) 7day_old,max(7day_new) 7day_new,max(7day_login) 7day_login,max(30_login) 30_login 
    -- group by 保留唯一数据
    from (
      select u.uid,u.register_dt,
      l1.in_time '7day_old',
      l2.in_time '7day_new',
      l3.in_time '7day_login',
      l4.in_time '30_login'
      from user u
      left join tb_user_log l1 on u.uid=l1.uid 
      and u.register_dt < date_sub('2021-11-04',interval 6 day) -- 注册时间在7天之前
      and l1.in_time >=date_sub('2021-11-04',interval 6 day) -- 近7天有登录
      left join tb_user_log l2 on u.uid=l2.uid 
      and datediff('2021-11-04',register_dt) <=6 -- 近7天新进用户
      left join tb_user_log l3 on u.uid=l3.uid 
      and u.latest_dt < date_sub('2021-11-04',interval 6 day) --  最后登录日期在7天之内
      and u.latest_dt >= date_sub('2021-11-04',interval 29 day) -- 30天前没有登录过
      left join tb_user_log l4 on u.uid=l4.uid 
      and u.latest_dt <= date_sub('2021-11-04',interval 29 day) -- 最后登录日期在30天之前)
      ) t group by uid
  ) t 
)t group by grade 
order by ratio desc

 
  with user as
(
select uid,date(min(in_time)) register_dt,date(max(out_time)) latest_dt
 from tb_user_log 
group by uid
),
current_dt as
(
select max(out_time) cur_dt from tb_user_log
)
select user_grade,round(count(user_grade)/amount,2) ratio from (
  select 
  u.uid,
  case
    when datediff(cur_dt,register_dt)>6 and datediff(cur_dt,latest_dt)<=6 then '忠实用户'
    when datediff(cur_dt,register_dt)<=6 then '新晋用户'
    when datediff(cur_dt,latest_dt)<=29 and datediff(cur_dt,latest_dt)> 6 then '沉睡用户'
    when datediff(cur_dt,latest_dt)>29 then '流失用户'
--     else '流失用户'
  end user_grade,
  count(*) over() amount
  from user u
  left join current_dt c on 1=1 -- 每一行都附加上当前最大日期
) t
group by user_grade,amount
order by ratio desc

-- 大佬的做法
SELECT user_grade, round(count(uid)/(select count(distinct uid) from tb_user_log),2) ratio
FROM (SELECT uid, 
            (CASE WHEN DATEDIFF(DATE((SELECT MAX(in_time) FROM tb_user_log)),date(max(in_time)))<=6
            AND DATEDIFF(DATE((SELECT MAX(in_time) FROM tb_user_log)),date(min(in_time)))>6
            THEN '忠实用户'
            WHEN DATEDIFF(DATE((SELECT MAX(in_time) FROM tb_user_log)),date(min(in_time)))<=6
            THEN '新晋用户'
            WHEN DATEDIFF(DATE((SELECT MAX(in_time) FROM tb_user_log)),date(max(in_time))) BETWEEN 7 AND 29
            THEN '沉睡用户'
            WHEN DATEDIFF(DATE((SELECT MAX(in_time) FROM tb_user_log)),date(max(in_time)))>29
            THEN '流失用户' END) AS user_grade
            FROM tb_user_log
            GROUP BY uid) a
GROUP BY user_grade
ORDER BY ratio DESC;

SQL11 每天的日活数及新用户占比

  • 数据
DROP TABLE IF EXISTS tb_user_log;
CREATE TABLE tb_user_log (
    id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
    uid INT NOT NULL COMMENT '用户ID',
    artical_id INT NOT NULL COMMENT '视频ID',
    in_time datetime COMMENT '进入时间',
    out_time datetime COMMENT '离开时间',
    sign_in TINYINT DEFAULT 0 COMMENT '是否签到'
) CHARACTER SET utf8 COLLATE utf8_bin;

INSERT INTO tb_user_log(uid, artical_id, in_time, out_time, sign_in) VALUES
  (101, 9001, '2021-10-31 10:00:00', '2021-10-31 10:00:09', 0),
  (102, 9001, '2021-10-31 10:00:00', '2021-10-31 10:00:09', 0),
  (101, 0, '2021-11-01 10:00:00', '2021-11-01 10:00:42', 1),
  (102, 9001, '2021-11-01 10:00:00', '2021-11-01 10:00:09', 0),
  (108, 9001, '2021-11-01 10:00:01', '2021-11-01 10:01:50', 0),
  (108, 9001, '2021-11-02 10:00:01', '2021-11-02 10:01:50', 0),
  (104, 9001, '2021-11-02 10:00:28', '2021-11-02 10:00:50', 0),
  (106, 9001, '2021-11-02 10:00:28', '2021-11-02 10:00:50', 0),
  (108, 9001, '2021-11-03 10:00:01', '2021-11-03 10:01:50', 0),
  (109, 9002, '2021-11-03 11:00:55', '2021-11-03 11:00:59', 0),
  (104, 9003, '2021-11-03 11:00:45', '2021-11-03 11:00:55', 0),
  (105, 9003, '2021-11-03 11:00:53', '2021-11-03 11:00:59', 0),
  (106, 9003, '2021-11-03 11:00:45', '2021-11-03 11:00:55', 0);
  • 题目

    问题:统计每天的日活数及新用户占比

    • 新用户占比=当天的新用户数÷当天活跃用户数(日活数)。

    • 如果in_time-进入时间out_time-离开时间跨天了,在两天里都记为该用户活跃过。

    • 新用户占比保留2位小数,结果按日期升序排序。

  • SQL

select login_dt,count(distinct uid) dau,round(sum(is_con)/count(distinct uid) ,2) ratio
 from (
   select u.uid,u.dt login_dt,ur.re_dt,
   if(u.dt=ur.re_dt,1,0) is_con
   from  (
     select uid,date(in_time) dt from tb_user_log
     union 
     select uid,date(out_time) dt from tb_user_log
   ) u 
   left join  (
     select uid,min(date(in_time)) re_dt from tb_user_log
     group by uid
   ) ur on u.uid=ur.uid )t
 group by login_dt
 order by login_dt asc

SQL12 连续签到领金币

  • 数据
DROP TABLE IF EXISTS tb_user_log;
CREATE TABLE tb_user_log (
    id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
    uid INT NOT NULL COMMENT '用户ID',
    artical_id INT NOT NULL COMMENT '视频ID',
    in_time datetime COMMENT '进入时间',
    out_time datetime COMMENT '离开时间',
    sign_in TINYINT DEFAULT 0 COMMENT '是否签到'
) CHARACTER SET utf8 COLLATE utf8_bin;

INSERT INTO tb_user_log(uid, artical_id, in_time, out_time, sign_in) VALUES
  (101, 0, '2021-07-07 10:00:00', '2021-07-07 10:00:09', 1),
  (101, 0, '2021-07-08 10:00:00', '2021-07-08 10:00:09', 1),
  (101, 0, '2021-07-09 10:00:00', '2021-07-09 10:00:42', 1),
  (101, 0, '2021-07-10 10:00:00', '2021-07-10 10:00:09', 1),
  (101, 0, '2021-07-11 23:59:55', '2021-07-11 23:59:59', 1),
  (101, 0, '2021-07-12 10:00:28', '2021-07-12 10:00:50', 1),
  (101, 0, '2021-07-13 10:00:28', '2021-07-13 10:00:50', 1),
  (102, 0, '2021-10-01 10:00:28', '2021-10-01 10:00:50', 1),
  (102, 0, '2021-10-02 10:00:01', '2021-10-02 10:01:50', 1),
  (102, 0, '2021-10-03 11:00:55', '2021-10-03 11:00:59', 1),
  (102, 0, '2021-10-04 11:00:45', '2021-10-04 11:00:55', 0),
  (102, 0, '2021-10-05 11:00:53', '2021-10-05 11:00:59', 1),
  (102, 0, '2021-10-06 11:00:45', '2021-10-06 11:00:55', 1);
  • 题目

    场景逻辑说明

    • artical_id-文章ID代表用户浏览的文章的ID,特殊情况artical_id-文章ID0表示用户在非文章内容页(比如App内的列表页、活动页等)。注意:只有artical_id为0时sign_in值才有效。

    • 从2021年7月7日0点开始,用户每天签到可以领1金币,并可以开始累积签到天数,连续签到的第3、7天分别可额外领2、6金币。

    • 每连续签到7天后重新累积签到天数(即重置签到天数:连续第8天签到时记为新的一轮签到的第一天,领1金币)

      问题:计算每个用户2021年7月以来每月获得的金币数(该活动到10月底结束,11月1日开始的签到不再获得金币)。结果按月份、ID升序排序。

      :如果签到记录的in_time-进入时间和out_time-离开时间跨天了,也只记作in_time对应的日期签到了。

  • SQL

select uid,mon,sum(coins) conns from
 (
   select uid,in_time,mon,rk1 ,
   case
     when rk1%7=3 then 3
     when rk1%7=0 then 7
     else 1
   end coins
   from (
     select uid,in_time,date_format(in_time,'%Y%m') mon,
     rank() over(partition by uid,flag order by in_time) rk1
     from(
       select 
       uid,
       in_time,
       date_sub(in_time, interval rk day) flag
        from 
        (
         select
         distinct uid,date(in_time) in_time,
         rank() over(partition by uid order by in_time) rk
         from tb_user_log l
         where artical_id=0 and sign_in=1 and date(in_time)  between '2021-07-07' and '2021-10-31'
       ) t
    ) t
   ) t
 ) t group by uid,mon order by mon,uid asc
  大数据 最新文章
实现Kafka至少消费一次
亚马逊云科技:还在苦于ETL?Zero ETL的时代
初探MapReduce
【SpringBoot框架篇】32.基于注解+redis实现
Elasticsearch:如何减少 Elasticsearch 集
Go redis操作
Redis面试题
专题五 Redis高并发场景
基于GBase8s和Calcite的多数据源查询
Redis——底层数据结构原理
上一篇文章      下一篇文章      查看所有文章
加:2022-04-06 23:15:00  更:2022-04-06 23:15:05 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/24 4:16:42-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码