IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 大数据 -> pyspark--写入数据 -> 正文阅读

[大数据]pyspark--写入数据


pyspark写入数据

一、参数说明

官网通用的写数据方式如下:

DataFrameWriter.save(path=None, format=None, mode=None, partitionBy=None, **options)

或者也可将参数提至前面:

DataFrameWriter.format(source).save()

使用案例如下:

df.write.format('json').save(os.path.join(tempfile.mkdtemp(), 'data'))

各种写法相当灵活,具体参考后文。对于各种参数我们在此先做一个说明。

1.1 mode

DataFrameWriter.mode(saveMode)

saveMode指定数据的不同写入模式,一共有以下四种模式:

  • append: 向已有数据文件或者数据表中追加写入数据,需保证数据列名一致。
  • overwrite: 覆盖写入数据,如果数据表已经存在,则会先删除数据表,然后创建新表,再将数据写入。
  • error or errorifexists: 如果数据已经存在则会报错。
  • ignore: 如果数据已经存在则忽略本次操作。

1.2 format

DataFrameWriter.format(source)

source可以指定不同的格式,如:json, parquet, orc等。实际在写入hive数据表时,常使用orc格式。数据格式除了用format指定,也可以直接在点号后跟数据格式,如:df.write.json(path)

1.3 partitionBy

DataFrameWriter.partitionBy(*cols)

指定列进行分区,实际工作中通常使用日期作为分区列。

1.4 bucketBy

关于分桶的介绍参考链接:bucket分桶 , 分桶

DataFrameWriter.bucketBy(numBuckets, col, *cols)

指定分桶的数量和分桶依据的列。分桶表常见的使用是在数据抽样:

select id,name,age from test_bucket tablesample(bucket 1 out of 2 on age);

1.5 sortBy

DataFrameWriter.sortBy(col, *cols)

根据指定列,在每个分桶中进行排序。

1.6 option

DataFrameWriter.option(key, value)
DataFrameWriter.options(**options)

将前述介绍的各种参数用key-value的形式进行指定。

二、数据准备

我们先创建一个dataframe,如下所示:

value = [("alice", 18), ("bob", 19)]
df = spark.createDataFrame(value, ["name", "age"])
df.show()
+-----+---+
| name|age|
+-----+---+
|alice| 18|
|  bob| 19|
+-----+---+

查看数据的分区情况:

print(df.rdd.getNumPartitions())
print(df.rdd.glom().collect())

结果为8个分区,未指定的情况下,默认使用了本地机器的CPU核数。

8
[[], [], [], [Row(name='alice', age=18)], [], [], [], [Row(name='bob', age=19)]]

为了让后续数据文件集中,方便查看,我们将数据进行重分区,分区数设定为1个,如下所示:

df = df.coalesce(1)

三、写入文件

3.1 csv文件

官网api接口:

DataFrameWriter.csv(path, mode=None, compression=None, sep=None, quote=None, escape=None, header=None, nullValue=None, escapeQuotes=None, quoteAll=None, dateFormat=None, timestampFormat=None, ignoreLeadingWhiteSpace=None, ignoreTrailingWhiteSpace=None, charToEscapeQuoteEscaping=None, encoding=None, emptyValue=None, lineSep=None)

简单的使用如下:

df.write.csv("../output/data_csv")
# 或者
df.write.format("csv").save("../output/data_csv")

生成的结果如下,一个csv文件,以及标志成功的文件和crc校验文件。

csv文件内容如下:

从结果可以看出,数据是没有表头的。

3.2 txt文件

DataFrameWriter.text(path, compression=None, lineSep=None)

需要注意官网有这么一句话:The DataFrame must have only one column that is of string type. Each row becomes a new line in the output file. 意思是写txt文件时dataframe只能有一列,而且必须是string类型

使用如下:

value = [("alice",), ("bob",)]
df = spark.createDataFrame(value, schema="name: string")
df.show()
df = df.coalesce(1)
df.write.text("../output/data_txt")

结果如下:

txt文件中结果如下,并没有表头信息。
alice
bob

3.3 json文件

DataFrameWriter.json(path, mode=None, compression=None, dateFormat=None, timestampFormat=None, lineSep=None, encoding=None, ignoreNullFields=None)[source]

使用如下:

df.write.json("../output/data_json")
# 或者
df.write.format("json").save("../output/data_json")

结果如下:

json数据文件的内容如下:

{"name":"alice","age":18}
{"name":"bob","age":19}

3.4 parquet文件

参考:parquet文件

官网api接口:

DataFrameWriter.parquet(path, mode=None, partitionBy=None, compression=None)

使用方式如下:

df.write.parquet("../output/data.parquet")
# 或者
df.write.format("parquet").save("../output/data.parquet")

生成的数据文件如下所示:

parquet文件内容如下(用Sublime打开):

也可以使用默认的save保存数据:

df.write.save("../output/data_default")

默认生成的文件格式为parquet,如下:

3.5 orc文件

参考:orc文件

DataFrameWriter.orc(path, mode=None, partitionBy=None, compression=None)

使用案例如下:

df.write.orc("../output/data_orc")
# 或者
df.write.format("orc").save("../output/data_orc")

结果如下:

orc文件中内容如下,与parquet的内容类似,也是采用二进制编码存储的。相同内容的数据,用orc文件明显比parquet文件占用的大小更小。本案例中,parquet文件664字节,而orc文件只有366字节。在实际工作中,我们一般选用orc格式保存数据。

四、写入数据表

4.1 api介绍

4.1.1 saveAsTable

参考:官网saveAsTable

DataFrameWriter.saveAsTable(name, format=None, mode=None, partitionBy=None, **options)

在实际工作中,这个api通常是结合hive来进行使用。spark配置好外部的hive,并开启hive的支持,则可以进行hive数据表的读写。

对于数据表的写入,如果是overwrite模式,则数据表会覆盖已有的表。如果是append模式,则会在原有数据表的基础上新增数据,且这种模式不需要指定列的顺序,dataframe会依据列名自动进行匹配数据列。官网有这么一段话可做参考:

Unlike DataFrameWriter.insertInto(), DataFrameWriter.saveAsTable() will use the column names to find the correct column positions.

4.1.2 insertInto

DataFrameWriter.insertInto(tableName, overwrite=None)

insertInto在写入hive表时,不会按照列名插入数据,而只会按照数据列的顺序插入,因此在使用时尤其需要注意列的顺序不要发生变化。官网原话如下:

Unlike DataFrameWriter.saveAsTable(), DataFrameWriter.insertInto() ignores the column names and just uses position-based resolution.

4.1.3 jdbc

DataFrameWriter.jdbc(url, table, mode=None, properties=None)

通过jdbc连接一个外部数据库并写入数据。需要注意的是不要一次写入太多分区,否则容易导致数据库崩溃。参考官网提示:

Don’t create too many partitions in parallel on a large cluster; otherwise Spark might crash your external database systems.

在工作中这种情况也可能碰到,比如将数据写入到mysql数据库中。

4.2 写入hive数据表

4.2.1 append

其实这种方式在实际工作中很少会用到,因为它无法保证数据不重复。举例来说,对于一张无分区表,如果是每天append追加数据,万一某一天数据写入一半出错了,重新写入前,必须手动把这部分数据删掉,徒增了工作量。而对于分区表来说,数据通常是按照分区表整个覆盖写入的,append方式行不通。

使用如下:

df.write.format("orc").mode("append").saveAsTable("db.tablename")

4.2.2 overwrite

overwrite通常是针对非分区表进行操作,每次写入数据前,会自动删除原表,然后依据新的数据列创建一个新表,然后再将数据写入。

使用如下:

df.write.format("orc").mode("overwrite").saveAsTable("db.tablename")

对于分区表则需要结合其他操作来执行数据写入。

4.2.3 分区表

参考链接:pyspark覆盖hive分区表

在第一次写入数据时,可以采用如下操作:

df.write.format("orc").mode("overwrite").partitionBy("part_col").saveAsTable("db.tablename")

part_col是指定用来进行分区的列,必须包含于dataframe中。初次写入的时候,会自动生成一个分区表。

第二次及后续写入数据时,我们通常会希望数据能按照分区进行覆盖写。比如某个分区的数据写入出错,或者需要重新往这个分区写入数据时,指定分区能够被覆盖掉。

这个时候如果还继续使用上面的方法写入数据,会发现整张数据表都被覆盖掉,显然这不是我们希望看到的。针对这个需求,可以采用如下方法写入数据:

df.write.format("orc").mode("overwrite").insertInto("db.tablename")

同时,需要配置参数:

spark.conf.set("spark.sql.sources.partitionOverwriteMode", "dynamic")

需要注意的是dataframe数据的列顺序不能发生改变

4.3 写入mysql数据表

参考链接:官网参考

url = "jdbc:mysql://IPaddress:3306/database"
driver = "com.mysql.jdbc.Driver"
user = "username"
passwd = "12345"
db = "database"
table = "tablename"
df.write.format("jdbc").mode("append")
	.options(
        url=url, 
        driver=driver, 
        user=user, 
        password=passwd,
        dbtable=db + "." + table)
    .save()

一个常规的写入mysql代码便是上述这样,IPaddress指定mysql服务器IP地址,database为数据库名,其他参数依次填入即可。

实际项目中,有可能会碰到编码的问题,也可以在写入数据的时候指定编码方式,如下:

database = "database"
url = "jdbc:mysql://IPaddress:3306/%s"%database
table = "tablename"
user = "username"
password = "12345"
df.write.format("jdbc").mode("append")
    .option("url", url)
    .option("useUnicode","true")
    .option("characterEncoding","utf-8")
    .option("dbtable", table)
    .option("user", user)
    .option("password", password)
    .save()

或者将参数写在url中也可以:

database = "test"
url = "jdbc:mysql://IPaddress:3306/%s?useUnicode=true&characterEncoding=utf-8"%database
table = "t_1202"
user = "username"
password = "password"
df.write.format("jdbc").mode("append")
    .option("url", url)
    .option("dbtable", table)
    .option("user", user)
    .option("password", password)
    .save()

如果是使用df.write.jdbc这个api,则可以用如下方式:

df_m.write.jdbc(
    url="jdbc:mysql://172.10.2.70/nic"
		"?user=username&password=passwd&useUnicode=true&characterEncoding=utf8",
    mode="append",
    table="tablename",
    properties={"driver": 'com.mysql.jdbc.Driver'})

格式灵活多样,可根据需要选择。

  大数据 最新文章
实现Kafka至少消费一次
亚马逊云科技:还在苦于ETL?Zero ETL的时代
初探MapReduce
【SpringBoot框架篇】32.基于注解+redis实现
Elasticsearch:如何减少 Elasticsearch 集
Go redis操作
Redis面试题
专题五 Redis高并发场景
基于GBase8s和Calcite的多数据源查询
Redis——底层数据结构原理
上一篇文章      下一篇文章      查看所有文章
加:2022-04-23 10:53:19  更:2022-04-23 10:55:28 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/24 2:32:03-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码