IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 大数据 -> 离线数仓(1)用户行为数据的日志采集(flume) -> 正文阅读

[大数据]离线数仓(1)用户行为数据的日志采集(flume)

flume配置

(1)监听日志文件,传入到kafka(TAILDIR source、KafkaChannel)

日志采集Flume需要采集日志文件内容,并对日志格式(JSON)进行校验,然后将校验通过的日志发送到Kafka。

此处可选择TaildirSource和KafkaChannel,并配置日志校验拦截器。

选择TailDirSource和KafkaChannel的原因如下:

1)TailDirSource

TailDirSource相比ExecSource、SpoolingDirectorySource的优势

TailDirSource:断点续传、多目录。Flume1.6以前需要自己自定义Source记录每次读取文件位置,实现断点续传。

ExecSource可以实时搜集数据,但是在Flume不运行或者Shell命令出错的情况下,数据将会丢失。

SpoolingDirectorySource监控目录,支持断点续传。

2)Kafka Channel

采用Kafka Channel,省去了Sink,提高了效率。

1、自定义拦截器

package com.yyds.flume.interceptor;

import org.apache.flume.Context;
import org.apache.flume.Event;
import org.apache.flume.interceptor.Interceptor;


import java.nio.charset.StandardCharsets;
import java.util.Iterator;
import java.util.List;

/**
 * flume自定义拦截器
 */
public class ETLInterceptor implements Interceptor {
    @Override
    public void initialize() {

    }

    @Override
    public Event intercept(Event event) {
        // 获取数据
        byte[] body = event.getBody();
        String log = new String(body, StandardCharsets.UTF_8);
        // 判断log是否为json
        boolean json = JSONUtils.isJson(log);
        if(json){
            return event;
        }
        return null;
    }

    @Override
    public List<Event> intercept(List<Event> events) {
        // 将event为Null的过滤掉
        Iterator<Event> iterator = events.iterator();

        while (iterator.hasNext()){
            Event event = iterator.next();
            if(intercept(event) == null){
                iterator.remove();
            }
        }
        return events;
    }

    @Override
    public void close() {

    }


    public static  class Builder implements Interceptor.Builder{

        @Override
        public Interceptor build() {
            return new ETLInterceptor();
        }

        @Override
        public void configure(Context context) {

        }
    }


}

package com.yyds.flume.interceptor;

import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.JSONException;

public class JSONUtils {
    public static boolean isJson(String log) {
        try {
            JSON.parseObject(log);
            return true;
        }catch (JSONException e){
            return false;
        }
    }
}
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>org.yyds</groupId>
    <artifactId>flume</artifactId>
    <version>1.0-SNAPSHOT</version>



    <dependencies>
        <dependency>
            <groupId>org.apache.flume</groupId>
            <artifactId>flume-ng-core</artifactId>
            <version>1.9.0</version>
            <scope>provided</scope>
        </dependency>

        <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>fastjson</artifactId>
            <version>1.2.62</version>
        </dependency>
    </dependencies>

    <build>
        <plugins>
            <plugin>
                <artifactId>maven-compiler-plugin</artifactId>
                <version>2.3.2</version>
                <configuration>
                    <source>1.8</source>
                    <target>1.8</target>
                </configuration>
            </plugin>
            <plugin>
                <artifactId>maven-assembly-plugin</artifactId>
                <configuration>
                    <descriptorRefs>
                        <descriptorRef>jar-with-dependencies</descriptorRef>
                    </descriptorRefs>
                </configuration>
                <executions>
                    <execution>
                        <id>make-assembly</id>
                        <phase>package</phase>
                        <goals>
                            <goal>single</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>


</project>

2、配置文件

#为各组件命名
a1.sources = r1
a1.channels = c1

#描述source
a1.sources.r1.type = TAILDIR
a1.sources.r1.filegroups = f1
a1.sources.r1.filegroups.f1 = /opt/yyds/applog/log/app.*
a1.sources.r1.positionFile = /opt/yyds/apps/flume-1.9.0/taildir_position.json
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = com.yyds.flume.interceptor.ETLInterceptor$Builder

#描述channel
a1.channels.c1.type = org.apache.flume.channel.kafka.KafkaChannel
a1.channels.c1.kafka.bootstrap.servers = server15:9092,server16:9092,server17:9092
a1.channels.c1.kafka.topic = topic_log
a1.channels.c1.parseAsFlumeEvent = false

#绑定source和channel以及sink和channel的关系
a1.sources.r1.channels = c1

(2)从kafka中读取数据,传入到hdfs中(KafkaSource、file channel、hdfs sink)

## 组件
a1.sources=r1
a1.channels=c1
a1.sinks=k1

## source1
a1.sources.r1.type = org.apache.flume.source.kafka.KafkaSource
a1.sources.r1.batchSize = 5000
a1.sources.r1.batchDurationMillis = 2000
a1.sources.r1.kafka.bootstrap.servers = server15:9092,server16:9092,server17:9092
a1.sources.r1.kafka.topics=topic_log
a1.sources.r1.kafka.consumer.group.id=flume
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = com.yyds.flume.interceptor.TimestampInterceptor$Builder

## channel1
a1.channels.c1.type = file
a1.channels.c1.checkpointDir = /opt/yyds/apps/flume-1.9.0/checkpoint/behavior1
a1.channels.c1.dataDirs = /opt/yyds/apps/flume-1.9.0/data/behavior1/
a1.channels.c1.maxFileSize = 2146435071
a1.channels.c1.capacity = 1000000
a1.channels.c1.keep-alive = 6


## sink1
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path = /origin_data/gmall/log/topic_log/%Y-%m-%d
a1.sinks.k1.hdfs.filePrefix = log-


a1.sinks.k1.hdfs.rollInterval = 600
a1.sinks.k1.hdfs.rollSize = 134217728
a1.sinks.k1.hdfs.rollCount = 0

## 控制输出文件是原生文件。
a1.sinks.k1.hdfs.fileType = CompressedStream
a1.sinks.k1.hdfs.codeC = gzip

## 拼装
a1.sources.r1.channels = c1
a1.sinks.k1.channel= c1

自定义拦截器,解决零点漂移问题

package com.yyds.flume.interceptor;

import com.alibaba.fastjson.JSONObject;
import org.apache.flume.Context;
import org.apache.flume.Event;
import org.apache.flume.interceptor.Interceptor;

import java.nio.charset.StandardCharsets;
import java.util.List;
import java.util.Map;

/**
 * 解决零点漂移问题
 * 
 * 修改header中的时间戳值,改为日志数据中的时间
 * 提供给hdfs sink使用  控制输出的文件夹
 */
public class TimestampInterceptor implements Interceptor {
    @Override
    public void initialize() {
        
    }

    @Override
    public Event intercept(Event event) {

        byte[] body = event.getBody();
        String log = new String(body, StandardCharsets.UTF_8);
        JSONObject jsonObject = JSONObject.parseObject(log);

        String timestamp = jsonObject.getString("ts");

        // 修改header中的时间戳值,改为日志数据中的时间
        Map<String, String> headers = event.getHeaders();
        headers.put("timestamp",timestamp);

        return event;
    }

    @Override
    public List<Event> intercept(List<Event> events) {
        for (Event event : events) {
            intercept(event);
        }
        return events;
    }

    @Override
    public void close() {

    }
    
    public static class  Builder implements Interceptor.Builder{

        @Override
        public Interceptor build() {
            return new TimestampInterceptor();
        }

        @Override
        public void configure(Context context) {

        }
    }
    
}

注:配置优化
1)FileChannel优化
通过配置dataDirs指向多个路径,每个路径对应不同的硬盘,增大Flume吞吐量。
官方说明如下:
Comma separated list of directories for storing log files. Using multiple directories on separate disks can improve file channel peformance
checkpointDir和backupCheckpointDir也尽量配置在不同硬盘对应的目录中,保证checkpoint坏掉后,可以快速使用backupCheckpointDir恢复数据


2)HDFS Sink优化
(1)HDFS存入大量小文件,有什么影响?
元数据层面:每个小文件都有一份元数据,其中包括文件路径,文件名,所有者,所属组,权限,创建时间等,这些信息都保存在Namenode内存中。所以小文件过多,会占用Namenode服务器大量内存,影响Namenode性能和使用寿命
计算层面:默认情况下MR会对每个小文件启用一个Map任务计算,非常影响计算性能。同时也影响磁盘寻址时间。

(2)HDFS小文件处理
官方默认的这三个参数配置写入HDFS后会产生小文件,hdfs.rollInterval、hdfs.rollSize、hdfs.rollCount
基于以上hdfs.rollInterval=3600,hdfs.rollSize=134217728,hdfs.rollCount =0几个参数综合作用,效果如下:
(1)文件在达到128M时会滚动生成新文件
(2)文件创建超3600秒时会滚动生成新文件
  大数据 最新文章
实现Kafka至少消费一次
亚马逊云科技:还在苦于ETL?Zero ETL的时代
初探MapReduce
【SpringBoot框架篇】32.基于注解+redis实现
Elasticsearch:如何减少 Elasticsearch 集
Go redis操作
Redis面试题
专题五 Redis高并发场景
基于GBase8s和Calcite的多数据源查询
Redis——底层数据结构原理
上一篇文章      下一篇文章      查看所有文章
加:2022-04-26 11:47:11  更:2022-04-26 11:47:41 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/16 10:56:46-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码