IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 大数据 -> Kafka传输文件(字节数组) -> 正文阅读

[大数据]Kafka传输文件(字节数组)

使用Kafka以字节数组的形式传输文件

最近遇到解析大量小文件的需求,之前都是将文件放到HDFS,然后读取进行解析。

由于都是小文件且文件量很多,所以不想使用HDFS,于是采用Kafka来做中间件,效果还不错,特此分享。

原理是将文件以字节流的形式读入字节数组中,将字节数组发送到Kafka,供下游消费。

适用于海量小文件的处理。

实现

生产者

package com.upupfeng.kafka;

import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;

import java.io.File;
import java.io.FileInputStream;
import java.util.Properties;

/**
 * 将文件内容序列化,发到kafka中
 *
 * @author mawf
 */
public class SendFileToKafka {

    public static void main(String[] args) {

        String filePath = "D:\\dev\\a.xml.gz";

        Properties kafkaProps = new Properties();
        kafkaProps.put("bootstrap.servers", "server1:9092");
        kafkaProps.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        kafkaProps.put("value.serializer", "org.apache.kafka.common.serialization.ByteArraySerializer");
        KafkaProducer<String, byte[]> producer = new KafkaProducer<String, byte[]>(kafkaProps);
        try {
            File file = new File(filePath);
            FileInputStream fis = new FileInputStream(file);
            byte[] buffer = new byte[fis.available()];
            // 读到buffer字节数组中
            fis.read(buffer);
            ProducerRecord<String, byte[]> record = new ProducerRecord<String, byte[]>("dataTopic", file.getName(), buffer);
            producer.send(record);
            producer.close();
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}

消费者

package com.upupfeng.kafka;

import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;

import java.io.BufferedReader;
import java.io.ByteArrayInputStream;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.Properties;
import java.util.zip.GZIPInputStream;

/**
 * @author mawf
 */
public class ConsumerFileByteArrayFromKafka {

    public static void main(String[] args) {

        Properties props = new Properties();
        props.put("bootstrap.servers", "server1:9092");
        props.put("group.id", "group1");
        props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");

        props.put("value.deserializer", "org.apache.kafka.common.serialization.ByteArrayDeserializer");
        KafkaConsumer<String, byte[]> consumer = new KafkaConsumer<String, byte[]>(props);
        consumer.subscribe(Arrays.asList("dataTopic"));
        try {
            while (true) {
                ConsumerRecords<String, byte[]> records = consumer.poll(100);
                for (ConsumerRecord<String, byte[]> record : records) {
                    System.out.println("offset=" + record.offset() + ",key=" + record.key() + ",value=" + record.value());

                    String fileName = record.key();
                    byte[] message = record.value();

                    ByteArrayInputStream byteArrayInputStream = new ByteArrayInputStream(message);
                    GZIPInputStream gzipInputStream = new GZIPInputStream(byteArrayInputStream);

                    BufferedReader br = new BufferedReader(new InputStreamReader(gzipInputStream));
                    String line;
                    while ((line = br.readLine()) != null) {
                        System.out.println(line);
                    }

                    br.close();
                    byteArrayInputStream.close();
                }
            }
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            consumer.close();
        }

    }
}

  大数据 最新文章
实现Kafka至少消费一次
亚马逊云科技:还在苦于ETL?Zero ETL的时代
初探MapReduce
【SpringBoot框架篇】32.基于注解+redis实现
Elasticsearch:如何减少 Elasticsearch 集
Go redis操作
Redis面试题
专题五 Redis高并发场景
基于GBase8s和Calcite的多数据源查询
Redis——底层数据结构原理
上一篇文章      下一篇文章      查看所有文章
加:2022-04-26 11:47:11  更:2022-04-26 11:50:10 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/24 2:47:05-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码