Yarn资源调度器概述
思考:
1)如何管理集群资源?
2)如何给任务合理分配资源?
Yarn 是一个资源调度平台,负责为运算程序提供服务器运算资源,相当于一个分布式的操作系统平台 ,而MapReduce 等运算程序则相当于运行于操作系统之上的应用程序 。
1、Yarn基础架构
Yarn主要由ResourceManager、NodeManager、ApplicationMaster和Container等组件构成。
2、Yarn工作机制
? (1)MR程序提交到客户端所在的节点。
? (2)YarnRunner向ResourceManager申请一个Application。
? (3)RM将该应用程序的资源路径返回给YarnRunner。
? (4)该程序将运行所需资源提交到HDFS上。
? (5)程序资源提交完毕后,申请运行mrAppMaster。
? (6)RM将用户的请求初始化成一个Task。
? (7)其中一个NodeManager领取到Task任务。
? (8)该NodeManager创建容器Container,并产生MRAppmaster。
? (9)Container从HDFS上拷贝资源到本地。
? (10)MRAppmaster向RM 申请运行MapTask资源。
? (11)RM将运行MapTask任务分配给另外两个NodeManager,另两个NodeManager分别领取任务并创建容器。
? (12)MR向两个接收到任务的NodeManager发送程序启动脚本,这两个NodeManager分别启动MapTask,MapTask对数据分区排序。
? (13)MrAppMaster等待所有MapTask运行完毕后,向RM申请容器,运行ReduceTask。
? (14)ReduceTask向MapTask获取相应分区的数据。
? (15)程序运行完毕后,MR会向RM申请注销自己。
3、作业提交全过程
HDFS、Yarn、MapReduce三者关系
作业提交过程之YARN
作业提交过程之YARN & MapReduce
作业提交全过程详解
(1)作业提交
第1步:Client调用job.waitForCompletion 方法,向整个集群提交MapReduce作业。
第2步:Client向RM申请一个作业id。
第3步:RM给Client返回该job资源的提交路径和作业id。
第4步:Client提交jar包、切片信息和配置文件到指定的资源提交路径。
第5步:Client提交完资源后,向RM申请运行MrAppMaster。
(2)作业初始化
第6步:当RM收到Client的请求后,将该job添加到容量调度器中。
第7步:某一个空闲的NM领取到该Job。
第8步:该NM创建Container,并产生MRAppmaster。
第9步:下载Client提交的资源到本地。
(3)任务分配
第10步:MrAppMaster向RM申请运行多个MapTask任务资源。
第11步:RM将运行MapTask任务分配给另外两个NodeManager,另两个NodeManager分别领取任务并创建容器。
(4)任务运行
第12步:MR向两个接收到任务的NodeManager发送程序启动脚本,这两个NodeManager分别启动MapTask,MapTask对数据分区排序。
第13步:MrAppMaster等待所有MapTask运行完毕后,向RM申请容器,运行ReduceTask。
第14步:ReduceTask向MapTask获取相应分区的数据。
第15步:程序运行完毕后,MR会向RM申请注销自己。
(5)进度和状态更新
YARN中的任务将其进度和状态(包括counter)返回给应用管理器, 客户端每秒(通过mapreduce.client.progressmonitor.pollinterval 设置)向应用管理器请求进度更新, 展示给用户。
(6)作业完成
除了向应用管理器请求作业进度外, 客户端每5秒都会通过调用waitForCompletion()来检查作业是否完成。时间间隔可以通过mapreduce.client.completion.pollinterval来设置。作业完成之后, 应用管理器和Container会清理工作状态。作业的信息会被作业历史服务器存储以备之后用户核查。
4、Yarn调度器和调度算法
目前,Hadoop作业调度器主要有三种:FIFO 、容量(Capacity Scheduler )和公平(Fair Scheduler )。Apache Hadoop3.1.3默认的资源调度器是Capacity Scheduler 。
CDH框架默认调度器是Fair Scheduler 。
具体设置详见:yarn-default.xml 文件
<property>
<description>The class to use as the resource scheduler.</description>
<name>yarn.resourcemanager.scheduler.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacityScheduler</value>
</property>
4.1 先进先出调度器(FIFO)
FIFO调度器(First In First Out):单队列,根据提交作业的先后顺序,先来先服务。
优点:简单易懂;
缺点:不支持多队列,生产环境很少使用;
4.2 容器调度器(Capacity Scheduler)
Capacity Scheduler是Yahoo开发的多用户调度器。
容器调度器特点
1、多队列:每个队列可配置一定的资源量,每个队列采用FIFO调度策略。
2、容量保证:管理员可为每个队列设置资源最低保证和资源使用上限。
3、灵活性:如果一个队列中的资源有剩余,可以暂时共享给那些需要资源的队列,而一旦该队列有新的应用程序提交,则其他队列借调的资源会归还给该队列。
4、多租户:
? 支持多用户共享集群和多应用程序同时运行。
? 为了防止同一个用户的作业独占队列中的资源,该调度器会对同一用户提交的作业所占资源量进行限定 。
容器调度器资源分配算法
- 队列资源分配
从root开始,使用深度优先算法,**优先选择资源占有率最低 **的队列分配资源
- 作业资源分配
默认按照提交作业的优先级 和提交时间 顺序分配资源
- 容器资源分配
按照容器的优先级 分配资源;
如果优先级相同。则按照数据本地性的原则 ;
? (1) 任务和数据在同一节点
? (2) 任务和数据在同一机架
? (3) 任务和数据不再同一节点也不在同一机架
4.3 公平调度器(Fair Scheduler)
Fair Schedulere是Facebook开发的多用户调度器。
公平调度器的特点
1)与容器调度器相同点
? (1) 多队列:支持多队列多作业
? (2) 容量保障:管理员可为每个队列设置资源最低保证和资源使用上线
? (3) 灵活性:如果一个队列中的资源有剩余,可以暂时共享给那些需要资源的队列,而一旦该队列有新的应用程序提交,则其他队列借调的资源会归还给该队列。
? (4) 多组合:支持多用户共享集群和多应用程序同时运行;为了防止同一个用户的作业独占队列中的资源,该调度器会对同一用户提交的作业所占资源量进行限定。
2)与容器调度器不同点
? (1) 核心调度策略不同
? 容器调度器:优先选择资源利用率 低的队列
? 公平调度器:优先选择对资源的缺额比例大 的
公平调度器----缺额的概念
公平调度器队列资源分配方式
1) FIFO策略
公平调度器每个队列资源分配策略如果选择FIFO的话,此时公平调度器相当于容器调度器
2) Fair策略
Fair策略(默认)是一种基于最大最小公平算法实现的资源多路复用方式,默认情况下,每个队列内部采用该方式分配资源,这意味着,如果一个队列中有两个应用程序同时运行,则每个应用程序可得到 1/2 的资源,如果三个应用程序同时运行,则每个应用程序可的到 1/3 的资源。
具体资源分配流程和容量调度器一致:
(1) 选择队列
(2) 选择作业
(3) 选择容器
以上三步,每一步都是按照公平策略分配资源
- 实际最小资源份额:mindshare=Min(资源需求量,配置的最小资源)
- 是否饥饿:isNeedy=资源使用量 < mindshare(实际最小资源份额)
- 资源分配比:minShareRatio=资源使用量/Max(mindshare,1)
- 资源使用权重比:useToWeighRatio=资源使用量/权重
公平调度器队列资源分配方式–案例
3) DRF策略
DRF (Dominant Rescurce Fairness) ,我们之前说的资源,都是单一标准,例如只考虑内存(也是Yarn默认的情况)。但是很多时候我们资源有很多种,例如内存,CPU,网络带宽等,这样我们很难衡量两个应用应该分配的资源比例。
那么在YARN中,我们用DRF来决定如何调度:
假设集群-共有100 CPU和10T 内存,而应用A需要(2 CPU, 300GB),应用B需要(6 CPU, 100GB) 。则两个应用分别需要A (2%CPU, 3%内存)和B (6%CPU, 1%内存)的资源,这就意味着A是内存主导的B是CPU主导的,针对这种情况,我们可以选择DRF策略对不同应用进行不同资源(CPU和内存)的一个不同比例的限制。
5、yarn常用命令
Yarn状态的查询,除了可以在hadoop103:8088页面查看外,还可以通过命令操作。常见的命令操作如下所示:
需求:执行WordCount案例,并用Yarn命令查看任务运行情况。
[liudachu@hadoop102 hadoop-3.1.3]$ myhadoop.sh start
[liudachu@hadoop102 hadoop-3.1.3]$ hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar wordcount /input /outpu
5.1 yarn application 查看任务
(1)列出所有Application:
[liudachu@hadoop102 hadoop-3.1.3]$ yarn application -list
2021-02-06 10:21:19,238 INFO client.RMProxy: Connecting to ResourceManager at hadoop103/192.168.10.103:8032
Total number of applications (application-types: [], states: [SUBMITTED, ACCEPTED, RUNNING] and tags: []):0
Application-Id Application-Name Application-Type User Queue State Final-State Progress Tracking-URL
(2)根据Application状态过滤:yarn application -list -appStates (所有状态:ALL、NEW、NEW_SAVING、SUBMITTED、ACCEPTED、RUNNING、FINISHED、FAILED、KILLED)
[liudachu@hadoop102 hadoop-3.1.3]$ yarn application -list -appStates FINISHED
2021-02-06 10:22:20,029 INFO client.RMProxy: Connecting to ResourceManager at hadoop103/192.168.10.103:8032
Total number of applications (application-types: [], states: [FINISHED] and tags: []):1
Application-Id Application-Name Application-Type User Queue State Final-State Progress Tracking-URL
application_1612577921195_0001 word count MAPREDUCE liudachu default FINISHED SUCCEEDED 100% http://hadoop102:19888/jobhistory/job/job_1612577921195_0001
(3)Kill掉Application:
[liudachu@hadoop102 hadoop-3.1.3]$ yarn application -kill application_1612577921195_0001
2021-02-06 10:23:48,530 INFO client.RMProxy: Connecting to ResourceManager at hadoop103/192.168.10.103:8032
Application application_1612577921195_0001 has already finished
5.2 yarn logs 查看日志
(1)查询Application日志:yarn logs -applicationId <ApplicationId>
liudachu@hadoop102 hadoop-3.1.3]$ yarn logs -applicationId application_1612577921195_0001
(2)查询Container日志:yarn logs -applicationId <ApplicationId> -containerId <ContainerId>
[liudachu@hadoop102 hadoop-3.1.3]$ yarn logs -applicationId application_1612577921195_0001 -containerId container_1612577921195_0001_01_000001
5.3 yarn applicationattempt 查看尝试运行的任务
(1)列出所有Application尝试的列表:yarn applicationattempt -list <ApplicationId>
[liudachu@hadoop102 hadoop-3.1.3]$ yarn applicationattempt -list application_1612577921195_0001
2021-02-06 10:26:54,195 INFO client.RMProxy: Connecting to ResourceManager at hadoop103/192.168.10.103:8032
Total number of application attempts :1
ApplicationAttempt-Id State AM-Container-Id Tracking-URL
appattempt_1612577921195_0001_000001 FINISHED container_1612577921195_0001_01_000001 http://hadoop103:8088/proxy/application_1612577921195_0001/
(2)打印ApplicationAttemp状态:yarn applicationattempt -status <ApplicationAttemptId>
[liudachu@hadoop102 hadoop-3.1.3]$ yarn applicationattempt -status appattempt_1612577921195_0001_000001
2021-02-06 10:27:55,896 INFO client.RMProxy: Connecting to ResourceManager at hadoop103/192.168.10.103:8032
Application Attempt Report :
ApplicationAttempt-Id : appattempt_1612577921195_0001_000001
State : FINISHED
AMContainer : container_1612577921195_0001_01_000001
Tracking-URL : http://hadoop103:8088/proxy/application_1612577921195_0001/
RPC Port : 34756
AM Host : hadoop104
Diagnostics :
5.4 yarn contaioner 查看容器
1)列出所有Container:yarn container -list <ApplicationAttemptId>
[liudachu@hadoop102 hadoop-3.1.3]$ yarn container -list appattempt_1612577921195_0001_000001
2021-02-06 10:28:41,396 INFO client.RMProxy: Connecting to ResourceManager at hadoop103/192.168.10.103:8032
Total number of containers :0
Container-Id Start Time Finish Time State Host Node Http Address
(2)打印Container状态: yarn container -status <ContainerId>
[liudachu@hadoop102 hadoop-3.1.3]$ yarn container -status container_1612577921195_0001_01_000001
2021-02-06 10:29:58,554 INFO client.RMProxy: Connecting to ResourceManager at hadoop103/192.168.10.103:8032
Container with id 'container_1612577921195_0001_01_000001' doesn't exist in RM or Timeline Server.
注:只有在任务跑的途中才能看到container的状态
5.5 yarn node 查看节点状态
列出所有节点:yarn node -list -all
[liudachu@hadoop102 hadoop-3.1.3]$ yarn node -list -all
2021-02-06 10:31:36,962 INFO client.RMProxy: Connecting to ResourceManager at hadoop103/192.168.10.103:8032
Total Nodes:3
Node-Id Node-State Node-Http-Address Number-of-Running-Containers
hadoop103:38168 RUNNING hadoop103:8042 0
hadoop102:42012 RUNNING hadoop102:8042 0
hadoop104:39702 RUNNING hadoop104:8042 0
5.6 yarn rmadmin 更新配置
加载队列配置:yarn rmadmin -refreshQueues
[liudachu@hadoop102 hadoop-3.1.3]$ yarn rmadmin -refreshQueues
2021-02-06 10:32:03,331 INFO client.RMProxy: Connecting to ResourceManager at hadoop103/192.168.10.103:8033
5.7 yarn queue 查看队列
打印队列信息:yarn queue -status <QueueName>
[liudachu@hadoop102 hadoop-3.1.3]$ yarn queue -status default
2021-02-06 10:32:33,403 INFO client.RMProxy: Connecting to ResourceManager at hadoop103/192.168.10.103:8032
Queue Information :
Queue Name : default
State : RUNNING
Capacity : 100.0%
Current Capacity : .0%
Maximum Capacity : 100.0%
Default Node Label expression : <DEFAULT_PARTITION>
Accessible Node Labels : *
Preemption : disabled
Intra-queue Preemption : disabled
6、Yarn生产环境核心参数
- ResourceManager 相关
yarn.resourcemanager.scheduleer.class 配置调度器,默认容量
yarn.resourcemanager.scheduleer.client.thread-count ResourceManager处理调度请求的线程数量,默认50
- NodeManager 相关
yarn.nodemanager.resource.detect-hardware-capabilities 是否让yarn自己检测硬件进行配置,默认false
yarn.nodemanager.resource.count-logical-processors-as-cores 是否将虚拟核数当作cpu核数,默认false
yarn.nodemanaager.resource.pcores-vcores-multiplier 虚拟核数和物理核数乘数,例如:4核8线程,该参数就应设为2,默认1.0
yarn.nodemanager.resource.memory-mb NodeManager使用内存,默认8G
yarn.nodemanager.resource.system-reserved-memory-mb NodeManager为系统保留多少内存
以上二个参数配置一个即可
yarn.nodemanager.resource.cpu-vcores NodeManager使用CPU核数,默认8个
yarn.nodemanager.pmem-check-enabled 是否开启物理内存检查限制container,默认打开
yarn.nodemanager.vmem-check-enabled 是否开启虚拟内存检查限制container,默认打开
yarn.nodemanager.vmem-pmem-ratio 虚拟内存物理内存比例,默认2:1
- Container 相关
yarn.scheduler.minimum-allocation-mb 容器最小内存,默认1G
yarn.scheduler.maximum-allocation-mb 容器最大内存,默认8G
yarn.scheduler.minimum-allocation-vcores 容器最小CPU核数,默认1个
yarn.scheduler.maximum-allocation-vcores 容器最大CPU核数,默认4个
Yarn案例实操
注:调整下列参数之前尽量拍摄Linux快照,否则后续的案例,还需要重写准备集群。
1、Yarn生产环境核心参数配置案例
1)需求:
从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。
2)需求分析:
1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster
平均每个节点运行10个 / 3台 ≈ 3个任务(4 3 3)
3)修改yarn-site.xml配置参数如下:
<property>
<description>The class to use as the resource scheduler.</description>
<name>yarn.resourcemanager.scheduler.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacityScheduler</value>
</property>
<property>
<description>Number of threads to handle scheduler interface.</description>
<name>yarn.resourcemanager.scheduler.client.thread-count</name>
<value>8</value>
</property>
<property>
<description>Enable auto-detection of node capabilities such as
memory and CPU.
</description>
<name>yarn.nodemanager.resource.detect-hardware-capabilities</name>
<value>false</value>
</property>
<property>
<description>Flag to determine if logical processors(such as
hyperthreads) should be counted as cores. Only applicable on Linux
when yarn.nodemanager.resource.cpu-vcores is set to -1 and
yarn.nodemanager.resource.detect-hardware-capabilities is true.
</description>
<name>yarn.nodemanager.resource.count-logical-processors-as-cores</name>
<value>false</value>
</property>
<property>
<description>Multiplier to determine how to convert phyiscal cores to
vcores. This value is used if yarn.nodemanager.resource.cpu-vcores
is set to -1(which implies auto-calculate vcores) and
yarn.nodemanager.resource.detect-hardware-capabilities is set to true. The number of vcores will be calculated as number of CPUs * multiplier.
</description>
<name>yarn.nodemanager.resource.pcores-vcores-multiplier</name>
<value>1.0</value>
</property>
<property>
<description>Amount of physical memory, in MB, that can be allocated
for containers. If set to -1 and
yarn.nodemanager.resource.detect-hardware-capabilities is true, it is
automatically calculated(in case of Windows and Linux).
In other cases, the default is 8192MB.
</description>
<name>yarn.nodemanager.resource.memory-mb</name>
<value>4096</value>
</property>
<property>
<description>Number of vcores that can be allocated
for containers. This is used by the RM scheduler when allocating
resources for containers. This is not used to limit the number of
CPUs used by YARN containers. If it is set to -1 and
yarn.nodemanager.resource.detect-hardware-capabilities is true, it is
automatically determined from the hardware in case of Windows and Linux.
In other cases, number of vcores is 8 by default.</description>
<name>yarn.nodemanager.resource.cpu-vcores</name>
<value>4</value>
</property>
<property>
<description>The minimum allocation for every container request at the RM in MBs. Memory requests lower than this will be set to the value of this property. Additionally, a node manager that is configured to have less memory than this value will be shut down by the resource manager.
</description>
<name>yarn.scheduler.minimum-allocation-mb</name>
<value>1024</value>
</property>
<property>
<description>The maximum allocation for every container request at the RM in MBs. Memory requests higher than this will throw an InvalidResourceRequestException.
</description>
<name>yarn.scheduler.maximum-allocation-mb</name>
<value>2048</value>
</property>
<property>
<description>The minimum allocation for every container request at the RM in terms of virtual CPU cores. Requests lower than this will be set to the value of this property. Additionally, a node manager that is configured to have fewer virtual cores than this value will be shut down by the resource manager.
</description>
<name>yarn.scheduler.minimum-allocation-vcores</name>
<value>1</value>
</property>
<property>
<description>The maximum allocation for every container request at the RM in terms of virtual CPU cores. Requests higher than this will throw an
InvalidResourceRequestException.</description>
<name>yarn.scheduler.maximum-allocation-vcores</name>
<value>2</value>
</property>
<property>
<description>Whether virtual memory limits will be enforced for
containers.</description>
<name>yarn.nodemanager.vmem-check-enabled</name>
<value>false</value>
</property>
<property>
<description>Ratio between virtual memory to physical memory when setting memory limits for containers. Container allocations are expressed in terms of physical memory, and virtual memory usage is allowed to exceed this allocation by this ratio.
</description>
<name>yarn.nodemanager.vmem-pmem-ratio</name>
<value>2.1</value>
</property>
4)分发配置。
注意:如果集群的硬件资源不一致,要每个NodeManager单独配置
5)重启集群
[liudachu@hadoop102 hadoop-3.1.3]$ sbin/stop-yarn.sh
[liudachu@hadoop103 hadoop-3.1.3]$ sbin/start-yarn.sh
6)执行WordCount程序
[liudachu@hadoop102 hadoop-3.1.3]$ hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar wordcount /input /output
7)观察Yarn任务执行页面
http://hadoop103:8088/cluster/apps
2、容器调度器多队列提交案例
1)在生产环境怎么创建队列?
(1)调度器默认就1个default队列,不能满足生产要求。
(2)按照框架:hive /spark/ flink 每个框架的任务放入指定的队列(企业用的不是特别多)
(3)按照业务模块:登录注册、购物车、下单、业务部门1、业务部门2
2)创建多队列的好处?
(1)因为担心员工不小心,写递归死循环代码,把所有资源全部耗尽。
(2)实现任务的降级使用,特殊时期保证重要的任务队列资源充足。11.11 6.18
业务部门1(重要)=》业务部门2(比较重要)=》下单(一般)=》购物车(一般)=》登录注册(次要)
2.1 需求
需求1:default队列占总内存的40%,最大资源容量占总资源60%,hive队列占总内存的60%,最大资源容量占总资源80%。
需求2:配置队列优先级
2.2 配置多队列的容量调度器
1)在capacity-scheduler.xml中配置如下:
? (1)修改如下配置
<property>
<name>yarn.scheduler.capacity.root.queues</name>
<value>default,hive</value>
<description>
The queues at the this level (root is the root queue).
</description>
</property>
<property>
<name>yarn.scheduler.capacity.root.default.capacity</name>
<value>40</value>
</property>
<property>
<name>yarn.scheduler.capacity.root.default.maximum-capacity</name>
<value>60</value>
</property>
(2)为新加队列添加必要属性:
<property>
<name>yarn.scheduler.capacity.root.hive.capacity</name>
<value>60</value>
</property>
<property>
<name>yarn.scheduler.capacity.root.hive.user-limit-factor</name>
<value>1</value>
</property>
<property>
<name>yarn.scheduler.capacity.root.hive.maximum-capacity</name>
<value>80</value>
</property>
<property>
<name>yarn.scheduler.capacity.root.hive.state</name>
<value>RUNNING</value>
</property>
<property>
<name>yarn.scheduler.capacity.root.hive.acl_submit_applications</name>
<value>*</value>
</property>
<property>
<name>yarn.scheduler.capacity.root.hive.acl_administer_queue</name>
<value>*</value>
</property>
<property>
<name>yarn.scheduler.capacity.root.hive.acl_application_max_priority</name>
<value>*</value>
</property>
<property>
<name>yarn.scheduler.capacity.root.hive.maximum-application-lifetime</name>
<value>-1</value>
</property>
<property>
<name>yarn.scheduler.capacity.root.hive.default-application-lifetime</name>
<value>-1</value>
</property>
2)分发配置文件 xsync capacity-scheduler.xml
3)重启Yarn或者执行yarn rmadmin -refreshQueues刷新队列,就可以看到两条队列:
[liudachu@hadoop102 hadoop-3.1.3]$ yarn rmadmin -refreshQueues
2.3 向Hive队列提交任务
1)hadoop jar的方式
[liudachu@hadoop102 hadoop-3.1.3]$ hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar wordcount -D mapreduce.job.queuename=hive /input /output
注: -D表示运行时改变参数值
2)打jar包的方式
默认的任务提交都是提交到default队列的。如果希望向其他队列提交任务,需要在Driver中声明:
public class WcDrvier {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Configuration conf = new Configuration();
conf.set("mapreduce.job.queuename","hive");
Job job = Job.getInstance(conf);
。。。 。。。
boolean b = job.waitForCompletion(true);
System.exit(b ? 0 : 1);
}
}
这样,这个任务在集群提交时,就会提交到hive队列:
2.4 任务优先级
容量调度器,支持任务优先级的配置,在资源紧张时,优先级高的任务将优先获取资源。默认情况,Yarn将所有任务的优先级限制为0,若想使用任务的优先级功能,须开放该限制。
1)修改yarn-site.xml文件,增加以下参数
<property>
<name>yarn.cluster.max-application-priority</name>
<value>5</value>
</property>
2)分发配置,并重启Yarn
[liudachu@hadoop102 hadoop]$ xsync yarn-site.xml
[liudachu@hadoop103 hadoop-3.1.3]$ sbin/stop-yarn.sh
[liudachu@hadoop103 hadoop-3.1.3]$ sbin/start-yarn.sh
3)模拟资源紧张环境,可连续提交以下任务,直到新提交的任务申请不到资源为止。
[liudachu@hadoop102 hadoop-3.1.3]$ hadoop jar /opt/module/hadoop-3.1.3/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar pi 5 2000000
4)再次重新提交优先级高的任务
[liudachu@hadoop102 hadoop-3.1.3]$ hadoop jar /opt/module/hadoop-3.1.3/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar pi -D mapreduce.job.priority=5 5 2000000
5)也可以通过以下命令修改正在执行的任务的优先级。
yarn application -appID <ApplicationID> -updatePriority 优先级
[liudachu@hadoop102 hadoop-3.1.3]$ yarn application -appID application_1611133087930_0009 -updatePriority 5
3、公平调度器案例
3.1 需求
创建两个队列,分别是test和liudachu(以用户所属组命名)。期望实现以下效果:若用户提交任务时指定队列 ,则任务提交到指定队列运行;若未指定队列 ,test用户提交的任务到root.group.test 队列运行,liudachu提交的任务到root.group.liudachu 队列运行(注:group为用户所属组)。
公平调度器的配置涉及到两个文件,一个是yarn-site.xml,另一个是公平调度器队列分配文件fair-scheduler.xml(文件名可自定义)。
(1)配置文件参考资料:
https://hadoop.apache.org/docs/r3.1.3/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
(2)任务队列放置规则参考资料:
https://blog.cloudera.com/untangling-apache-hadoop-yarn-part-4-fair-scheduler-queue-basics/
3.2 配置多队列的公平调度器
1)修改yarn-site.xml文件,加入以下参数
<property>
<name>yarn.resourcemanager.scheduler.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.FairScheduler</value>
<description>配置使用公平调度器</description>
</property>
<property>
<name>yarn.scheduler.fair.allocation.file</name>
<value>/opt/module/hadoop-3.1.3/etc/hadoop/fair-scheduler.xml</value>
<description>指明公平调度器队列分配配置文件</description>
</property>
<property>
<name>yarn.scheduler.fair.preemption</name>
<value>false</value>
<description>禁止队列间资源抢占</description>
</property>
2)配置fair-scheduler.xml
<?xml version="1.0"?>
<allocations>
<queueMaxAMShareDefault>0.5</queueMaxAMShareDefault>
<queueMaxResourcesDefault>4096mb,4vcores</queueMaxResourcesDefault>
<queue name="test">
<minResources>2048mb,2vcores</minResources>
<maxResources>4096mb,4vcores</maxResources>
<maxRunningApps>4</maxRunningApps>
<maxAMShare>0.5</maxAMShare>
<weight>1.0</weight>
<schedulingPolicy>fair</schedulingPolicy>
</queue>
<queue name="liudachu" type="parent">
<minResources>2048mb,2vcores</minResources>
<maxResources>4096mb,4vcores</maxResources>
<maxRunningApps>4</maxRunningApps>
<maxAMShare>0.5</maxAMShare>
<weight>1.0</weight>
<schedulingPolicy>fair</schedulingPolicy>
</queue>
<queuePlacementPolicy>
<rule name="specified" create="false"/>
<rule name="nestedUserQueue" create="true">
<rule name="primaryGroup" create="false"/>
</rule>
<rule name="reject" />
</queuePlacementPolicy>
</allocations>
3)分发配置并重启Yarn
[liudachu@hadoop102 hadoop]$ xsync yarn-site.xml
[liudachu@hadoop102 hadoop]$ xsync fair-scheduler.xml
[liudachu@hadoop103 hadoop-3.1.3]$ sbin/stop-yarn.sh
[liudachu@hadoop103 hadoop-3.1.3]$ sbin/start-yarn.sh
3.3 测试提交任务
1)提交任务时指定队列,按照配置规则,任务会到指定的root.test队列
[liudachu@hadoop102 hadoop-3.1.3]$ hadoop jar /opt/module/hadoop-3.1.3/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar pi -Dmapreduce.job.queuename=root.test 1 1
2)提交任务时不指定队列,按照配置规则,任务会到root.liudachu.liudachu队列
[liudachu@hadoop102 hadoop-3.1.3]$ hadoop jar /opt/module/hadoop-3.1.3/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar pi 1 1
?
4、Yarn的Tool接口案例
0)回顾:
[liudachu@hadoop102 hadoop-3.1.3]$ hadoop jar wc.jar com.liudachu.mapreduce.wordcount2.WordCountDriver /input /output1
? 期望可以动态传参,结果报错,误认为是第一个输入参数。
[liudachu@hadoop102 hadoop-3.1.3]$ hadoop jar wc.jar com.liudachu.mapreduce.wordcount2.WordCountDriver -Dmapreduce.job.queuename=root.test /input /output1
1)需求:自己写的程序也可以动态修改参数。编写Yarn的Tool接口。
2)具体步骤:
(1)新建Maven项目YarnDemo,pom如下:
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.liudachu.hadoop</groupId>
<artifactId>yarn_tool_test</artifactId>
<version>1.0-SNAPSHOT</version>
<dependencies>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>3.1.3</version>
</dependency>
</dependencies>
</project>
(2)新建com.liudachu.yarn报名
(3)创建类WordCount并实现Tool接口:
package com.liudachu.yarn;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import java.io.IOException;
public class WordCount implements Tool {
private Configuration conf;
@Override
public int run(String[] args) throws Exception {
Job job = Job.getInstance(conf);
job.setJarByClass(WordCountDriver.class);
job.setMapperClass(WordCountMapper.class);
job.setReducerClass(WordCountReducer.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
return job.waitForCompletion(true) ? 0 : 1;
}
@Override
public void setConf(Configuration conf) {
this.conf = conf;
}
@Override
public Configuration getConf() {
return conf;
}
public static class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
private Text outK = new Text();
private IntWritable outV = new IntWritable(1);
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString();
String[] words = line.split(" ");
for (String word : words) {
outK.set(word);
context.write(outK, outV);
}
}
}
public static class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable outV = new IntWritable();
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable value : values) {
sum += value.get();
}
outV.set(sum);
context.write(key, outV);
}
}
}
(4)新建WordCountDriver
package com.liudachu.yarn;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import java.util.Arrays;
public class WordCountDriver {
private static Tool tool;
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
switch (args[0]){
case "wordcount":
tool = new WordCount();
break;
default:
throw new RuntimeException(" No such tool: "+ args[0] );
}
int run = ToolRunner.run(conf, tool, Arrays.copyOfRange(args, 1, args.length));
System.exit(run);
}
}
3)在HDFS上准备输入文件,假设为/input目录,向集群提交该Jar包
[liudachu@hadoop102 hadoop-3.1.3]$ yarn jar YarnDemo.jar com.liudachu.yarn.WordCountDriver wordcount /input /output
注意此时提交的3个参数,第一个用于生成特定的Tool,第二个和第三个为输入输出目录。此时如果我们希望加入设置参数,可以在wordcount后面添加参数,例如:
[liudachu@hadoop102 hadoop-3.1.3]$ yarn jar YarnDemo.jar com.liudachu.yarn.WordCountDriver wordcount -Dmapreduce.job.queuename=root.test /input /output1
4)注:以上操作全部做完过后,快照回去或者手动将配置文件修改成之前的状态,因为本身资源就不够,分成了这么多,不方便以后测试。
|