IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 大数据 -> 026 数据仓库 -> 正文阅读

[大数据]026 数据仓库

1、数据仓库

数仓分层:ODS(Operational Data Store)直接存放原始数据,DWD(Data Warehouse Detail)对数据进行清洗 ,DWS(Data Warehouse Service)轻度汇总(存储每天数据的汇总),DWT(Data Warehouse Topic)重度汇总(存储一段时间数据的汇总),DIM维度层(事实表的描述信息,何人、何时、何地,即分析时所站的角度),ADS(Application Data Store)提供报表数据;
分层原因:简化复杂问题,减少重复开发,隔离原始数据;
几个概念:1)数据集市部门级的,2)数据仓库公司级的,3)数据湖包含各种类型的数据;
一文看懂:什么是数据库、数据湖、数据仓库、湖仓一体、智能湖仓?

2、关系建模与维度建模

三大范式:1NF消除非原子性,2NF消除部分依赖,3NF消除传递依赖,BCNF消除主属性对码的部分依赖。符合3NF要求的数据库设计,基本上解决了数据冗余过大,插入异常,修改异常,删除异常的问题。
详解第一范式、第二范式、第三范式、BCNF范式

关系模型严格遵循第三范式(3NF),数据冗余程度低,数据的一致性容易得到保证。由于数据分布于众多的表中,查询会相对复杂,在大数据的场景下,查询效率相对较低。
维度模型以数据分析作为出发点,不遵循三范式,故数据存在一定的冗余。维度模型面向业务,将业务用事实表和维度表呈现出来。表结构简单,故查询简单,查询效率较高。
雪花模型、星型模型和星座模型

在DWD层,以业务过程为建模驱动,基于每个具体业务过程的特点,构建最细粒度的明细层事实表。DWS层、DWT层和ADS层都是以需求为驱动,和维度建模已经没有关系了。事实表可做适当的宽表化处理。ADS层对特定系统各大主题指标分别进行分析。

Hive on Spark大体与Spark on Hive结构类似,只是SQL引擎(SQL的解析优化)不同,但是计算引擎都是Spark、存储引擎都是Hive!
大数据Hadoop之——Spark on Hive 和 Hive on Spark的区别与实现

3、数仓环境搭建

启动Spark历史服务器

[atguigu@hadoop102 conf]$ hadoop dfs -mkdir /directory
[atguigu@hadoop102 conf]$ start-history-server.sh

启动Spark的thriftserver(Spark对HiveServer2的实现),使用DBeaver连接Hive

[atguigu@hadoop102 hadoop]$ start-thriftserver.sh

针对Spark Thrift Server的一些配置

[atguigu@hadoop102 conf]$ cat /opt/module/spark-3.0.0-bin-hadoop3.2/conf/hive-site.xml 
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
    <!-- 修改Hive的计算引擎 -->
    <property>
        <name>hive.execution.engine</name>
        <value>tez</value>
    </property>
    <property>
        <name>hive.tez.container.size</name>
        <value>1024</value>
    </property>

    <!-- hive窗口打印默认库和表头 -->
    <property>
        <name>hive.cli.print.header</name>
        <value>true</value>
    </property>
    <property>
        <name>hive.cli.print.current.db</name>
        <value>true</value>
    </property>

    <!-- 指定hiveserver2连接的host -->
    <property>
        <name>hive.server2.thrift.bind.host</name>
        <value>hadoop102</value>
    </property>

    <!-- 指定hiveserver2连接的端口号 -->
    <property>
        <name>hive.server2.thrift.port</name>
        <value>10000</value>
    </property>

    <!-- jdbc连接的URL -->
    <property>
        <name>javax.jdo.option.ConnectionURL</name>
        <value>jdbc:mysql://hadoop102:3306/metastore?useSSL=false</value>
    </property>

    <!-- jdbc连接的Driver-->
    <property>
        <name>javax.jdo.option.ConnectionDriverName</name>
        <value>com.mysql.jdbc.Driver</value>
    </property>

    <!-- jdbc连接的username-->
    <property>
        <name>javax.jdo.option.ConnectionUserName</name>
        <value>root</value>
    </property>

    <!-- jdbc连接的password -->
    <property>
        <name>javax.jdo.option.ConnectionPassword</name>
        <value>root</value>
    </property>

    <!-- Hive默认在HDFS的工作目录 -->
    <property>
        <name>hive.metastore.warehouse.dir</name>
        <value>/user/hive/warehouse</value>
    </property>
    
   <!-- Hive元数据存储的验证 -->
    <property>
        <name>hive.metastore.schema.verification</name>
        <value>false</value>
    </property>
   
    <!-- 元数据存储授权  -->
    <property>
        <name>hive.metastore.event.db.notification.api.auth</name>
        <value>false</value>
    </property>
  
    <!-- 开启动态分区 -->
    <property>
    	<name>hive.exec.dynamic.partition.mode</name>
    	<value>nonstrict</value>
    </property>

</configuration>
[atguigu@hadoop102 conf]$ cat /opt/module/spark-3.0.0-bin-hadoop3.2/conf/spark-defaults.conf 
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

# Default system properties included when running spark-submit.
# This is useful for setting default environmental settings.

# Example:
# spark.master                     spark://master:7077
spark.eventLog.enabled           true
spark.eventLog.dir               hdfs://hadoop102:9820/directory
# spark.serializer                 org.apache.spark.serializer.KryoSerializer
# spark.driver.memory              5g
# spark.executor.extraJavaOptions  -XX:+PrintGCDetails -Dkey=value -Dnumbers="one two three"

spark.yarn.historyServer.address=hadoop102:18080
spark.history.ui.port=18080
#------------------------------------
#指定Spark master为yarn
spark.master=yarn
#Spark历史服务器读取历史任务日志的路径
spark.history.fs.logDirectory=hdfs://hadoop102:9820/directory
#开启Spark-sql自适应优化
spark.sql.adaptive.enabled=true
#开启Spark-sql中Reduce阶段分区数自适应
spark.sql.adaptive.coalescePartitions.enabled=true
#使用Hive提供的Parquet文件的序列化和反序列化工具,以兼容Hive
spark.sql.hive.convertMetastoreParquet=false
#使用老版的Parquet文件格式,以兼容Hive
spark.sql.parquet.writeLegacyFormat=true
#解决SPARK-21725问题
spark.hadoop.fs.hdfs.impl.disable.cache=true
#降低Spark-sql中类型检查级别,兼容Hive
spark.sql.storeAssignmentPolicy=LEGACY
[atguigu@hadoop102 conf]$ cat /opt/module/hadoop-3.1.3/etc/hadoop/capacity-scheduler.xml 
<!--
  Licensed under the Apache License, Version 2.0 (the "License");
  you may not use this file except in compliance with the License.
  You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

  Unless required by applicable law or agreed to in writing, software
  distributed under the License is distributed on an "AS IS" BASIS,
  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  See the License for the specific language governing permissions and
  limitations under the License. See accompanying LICENSE file.
-->
<configuration>

  <property>
    <name>yarn.scheduler.capacity.maximum-applications</name>
    <value>10000</value>
    <description>
      Maximum number of applications that can be pending and running.
    </description>
  </property>

  <property>
    <name>yarn.scheduler.capacity.maximum-am-resource-percent</name>
    <!-- 学习环境调大Application Master可以获得的最大资源百分比,生产使用默认的0.1就可以 -->
    <value>0.8</value>
    <description>
      Maximum percent of resources in the cluster which can be used to run 
      application masters i.e. controls number of concurrent running
      applications.
    </description>
  </property>

  <property>
    <name>yarn.scheduler.capacity.resource-calculator</name>
    <value>org.apache.hadoop.yarn.util.resource.DefaultResourceCalculator</value>
    <description>
      The ResourceCalculator implementation to be used to compare 
      Resources in the scheduler.
      The default i.e. DefaultResourceCalculator only uses Memory while
      DominantResourceCalculator uses dominant-resource to compare 
      multi-dimensional resources such as Memory, CPU etc.
    </description>
  </property>
  
  <!-- 指定hive队列的资源额定容量 -->
<property>
    <name>yarn.scheduler.capacity.root.hive.capacity</name>
    <value>50</value>
</property>
<!-- 指定队列中,用户提交job占用集群资源的百分比-->
<property>
    <name>yarn.scheduler.capacity.root.hive.user-limit-factor</name>
    <value>2</value>
</property>
<!-- 指定hive队列的资源最大容量 -->
<property>
    <name>yarn.scheduler.capacity.root.hive.maximum-capacity</name>
    <value>100</value>
</property>
<!--指定队列的工作状态-->
<property>
    <name>yarn.scheduler.capacity.root.hive.state</name>
    <value>RUNNING</value>
</property>
<!--访问权限,设定那些用户可以提交应用,*表示所有用户-->
<property>
    <name>yarn.scheduler.capacity.root.hive.acl_submit_applications</name>
    <value>*</value>
</property>
<!--访问权限,设定那些用户是管理者,*表示所有用户-->
<property>
    <name>yarn.scheduler.capacity.root.hive.acl_administer_queue</name>
    <value>*</value>
</property>
<!--访问权限,设定那些用户有优先,*表示所有用户平等-->
<property>
    <name>yarn.scheduler.capacity.root.hive.acl_application_max_priority</name>
    <value>*</value>
</property>
<!--访问权限,设定job的最大存活时间,-1表示没有限定-->
<property>
    <name>yarn.scheduler.capacity.root.hive.maximum-application-lifetime</name>
    <value>-1</value>
</property>
<!--访问权限,设定job的默认存活时间,-1表示没有限定-->
<property>
    <name>yarn.scheduler.capacity.root.hive.default-application-lifetime</name>
    <value>-1</value>
</property>

  <property>
    <name>yarn.scheduler.capacity.root.queues</name>
    <value>default,hive</value>
    <description>
      The queues at the this level (root is the root queue).
    </description>
  </property>

  <property>
    <name>yarn.scheduler.capacity.root.default.capacity</name>
    <value>50</value>
    <description>Default queue target capacity.</description>
  </property>

  <property>
    <name>yarn.scheduler.capacity.root.default.user-limit-factor</name>
    <value>1</value>
    <description>
      Default queue user limit a percentage from 0.0 to 1.0.
    </description>
  </property>

  <property>
    <name>yarn.scheduler.capacity.root.default.maximum-capacity</name>
    <value>60</value>
    <description>
      The maximum capacity of the default queue. 
    </description>
  </property>

  <property>
    <name>yarn.scheduler.capacity.root.default.state</name>
    <value>RUNNING</value>
    <description>
      The state of the default queue. State can be one of RUNNING or STOPPED.
    </description>
  </property>

  <property>
    <name>yarn.scheduler.capacity.root.default.acl_submit_applications</name>
    <value>*</value>
    <description>
      The ACL of who can submit jobs to the default queue.
    </description>
  </property>

  <property>
    <name>yarn.scheduler.capacity.root.default.acl_administer_queue</name>
    <value>*</value>
    <description>
      The ACL of who can administer jobs on the default queue.
    </description>
  </property>

  <property>
    <name>yarn.scheduler.capacity.root.default.acl_application_max_priority</name>
    <value>*</value>
    <description>
      The ACL of who can submit applications with configured priority.
      For e.g, [user={name} group={name} max_priority={priority} default_priority={priority}]
    </description>
  </property>

   <property>
     <name>yarn.scheduler.capacity.root.default.maximum-application-lifetime
     </name>
     <value>-1</value>
     <description>
        Maximum lifetime of an application which is submitted to a queue
        in seconds. Any value less than or equal to zero will be considered as
        disabled.
        This will be a hard time limit for all applications in this
        queue. If positive value is configured then any application submitted
        to this queue will be killed after exceeds the configured lifetime.
        User can also specify lifetime per application basis in
        application submission context. But user lifetime will be
        overridden if it exceeds queue maximum lifetime. It is point-in-time
        configuration.
        Note : Configuring too low value will result in killing application
        sooner. This feature is applicable only for leaf queue.
     </description>
   </property>

   <property>
     <name>yarn.scheduler.capacity.root.default.default-application-lifetime
     </name>
     <value>-1</value>
     <description>
        Default lifetime of an application which is submitted to a queue
        in seconds. Any value less than or equal to zero will be considered as
        disabled.
        If the user has not submitted application with lifetime value then this
        value will be taken. It is point-in-time configuration.
        Note : Default lifetime can't exceed maximum lifetime. This feature is
        applicable only for leaf queue.
     </description>
   </property>

  <property>
    <name>yarn.scheduler.capacity.node-locality-delay</name>
    <value>40</value>
    <description>
      Number of missed scheduling opportunities after which the CapacityScheduler 
      attempts to schedule rack-local containers.
      When setting this parameter, the size of the cluster should be taken into account.
      We use 40 as the default value, which is approximately the number of nodes in one rack.
      Note, if this value is -1, the locality constraint in the container request
      will be ignored, which disables the delay scheduling.
    </description>
  </property>

  <property>
    <name>yarn.scheduler.capacity.rack-locality-additional-delay</name>
    <value>-1</value>
    <description>
      Number of additional missed scheduling opportunities over the node-locality-delay
      ones, after which the CapacityScheduler attempts to schedule off-switch containers,
      instead of rack-local ones.
      Example: with node-locality-delay=40 and rack-locality-delay=20, the scheduler will
      attempt rack-local assignments after 40 missed opportunities, and off-switch assignments
      after 40+20=60 missed opportunities.
      When setting this parameter, the size of the cluster should be taken into account.
      We use -1 as the default value, which disables this feature. In this case, the number
      of missed opportunities for assigning off-switch containers is calculated based on
      the number of containers and unique locations specified in the resource request,
      as well as the size of the cluster.
    </description>
  </property>

  <property>
    <name>yarn.scheduler.capacity.queue-mappings</name>
    <value></value>
    <description>
      A list of mappings that will be used to assign jobs to queues
      The syntax for this list is [u|g]:[name]:[queue_name][,next mapping]*
      Typically this list will be used to map users to queues,
      for example, u:%user:%user maps all users to queues with the same name
      as the user.
    </description>
  </property>

  <property>
    <name>yarn.scheduler.capacity.queue-mappings-override.enable</name>
    <value>false</value>
    <description>
      If a queue mapping is present, will it override the value specified
      by the user? This can be used by administrators to place jobs in queues
      that are different than the one specified by the user.
      The default is false.
    </description>
  </property>

  <property>
    <name>yarn.scheduler.capacity.per-node-heartbeat.maximum-offswitch-assignments</name>
    <value>1</value>
    <description>
      Controls the number of OFF_SWITCH assignments allowed
      during a node's heartbeat. Increasing this value can improve
      scheduling rate for OFF_SWITCH containers. Lower values reduce
      "clumping" of applications on particular nodes. The default is 1.
      Legal values are 1-MAX_INT. This config is refreshable.
    </description>
  </property>


  <property>
    <name>yarn.scheduler.capacity.application.fail-fast</name>
    <value>false</value>
    <description>
      Whether RM should fail during recovery if previous applications'
      queue is no longer valid.
    </description>
  </property>

</configuration>
spark-sql -e "load data inpath '/origin_data/gmall/log/topic_log/$do_date' into table gmall.ods_log partition(dt='2020-06-15');"

hadoop jar /opt/module/hadoop-3.1.3/share/hadoop/common/hadoop-lzo-0.4.20.jar com.hadoop.compression.lzo.DistributedLzoIndexer /warehouse/gmall/ods/ods_log/dt=2020-06-15
  大数据 最新文章
实现Kafka至少消费一次
亚马逊云科技:还在苦于ETL?Zero ETL的时代
初探MapReduce
【SpringBoot框架篇】32.基于注解+redis实现
Elasticsearch:如何减少 Elasticsearch 集
Go redis操作
Redis面试题
专题五 Redis高并发场景
基于GBase8s和Calcite的多数据源查询
Redis——底层数据结构原理
上一篇文章      下一篇文章      查看所有文章
加:2022-05-05 11:25:14  更:2022-05-05 11:26:40 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/16 9:11:57-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码