需求一 用户活跃主题(日活、周活、月活)
涉及知识点:concat、concat_ws、collect_set、date_add、next_day、last_day、date_format、hive动态分区、if函数
1、dws层dws_uv_detail_day、dws_uv_detail_wk、dws_uv_detail_mn,ads层的ads_uv_count
--需求一:用户活跃主题
--dws层的日活跃(DAU)
create external table dws_uv_detail_day(
`mid_id` string COMMENT '设备唯一标识',
`user_id` string COMMENT '用户标识',
`version_code` string COMMENT '程序版本号',
`version_name` string COMMENT '程序版本名',
`lang` string COMMENT '系统语言',
`source` string COMMENT '渠道号',
`os` string COMMENT '安卓系统版本',
`area` string COMMENT '区域',
`model` string COMMENT '手机型号',
`brand` string COMMENT '手机品牌',
`sdk_version` string COMMENT 'sdkVersion',
`gmail` string COMMENT 'gmail',
`height_width` string COMMENT '屏幕宽高',
`app_time` string COMMENT '客户端日志产生时的时间',
`network` string COMMENT '网络模式',
`lng` string COMMENT '经度',
`lat` string COMMENT '纬度'
)partitioned by(dt string)
insert overwrite table dws_uv_detail_day partition(dt='2022-04-12')
select mid_id,
concat_ws('|', collect_set(user_id)) user_id,
concat_ws('|', collect_set(version_code)) version_code,
concat_ws('|', collect_set(version_name)) version_name,
concat_ws('|', collect_set(lang))lang,
concat_ws('|', collect_set(source)) source,
concat_ws('|', collect_set(os)) os,
concat_ws('|', collect_set(area)) area,
concat_ws('|', collect_set(model)) model,
concat_ws('|', collect_set(brand)) brand,
concat_ws('|', collect_set(sdk_version)) sdk_version,
concat_ws('|', collect_set(gmail)) gmail,
concat_ws('|', collect_set(height_width)) height_width,
concat_ws('|', collect_set(app_time)) app_time,
concat_ws('|', collect_set(network)) network,
concat_ws('|', collect_set(lng)) lng,
concat_ws('|', collect_set(lat)) lat
from dwd_start_log where dt='2022-04-12' group by mid_id;
-- next_day 获取指定时间的下周几是几号
select next_day('2022-05-03','mo')
-- date_add 对指定时间进行加减操作
select date_add('2022-05-03',+7)
-- 本周一到周日
select date_add(next_day('2022-04-02','MO'),-7)
select date_add(next_day('2022-04-02','MO'),-1)
--dws层的周活跃
create external table dws_uv_detail_wk(
`mid_id` string COMMENT '设备唯一标识',
`user_id` string COMMENT '用户标识',
`version_code` string COMMENT '程序版本号',
`version_name` string COMMENT '程序版本名',
`lang` string COMMENT '系统语言',
`source` string COMMENT '渠道号',
`os` string COMMENT '安卓系统版本',
`area` string COMMENT '区域',
`model` string COMMENT '手机型号',
`brand` string COMMENT '手机品牌',
`sdk_version` string COMMENT 'sdkVersion',
`gmail` string COMMENT 'gmail',
`height_width` string COMMENT '屏幕宽高',
`app_time` string COMMENT '客户端日志产生时的时间',
`network` string COMMENT '网络模式',
`lng` string COMMENT '经度',
`lat` string COMMENT '纬度',
`monday_date` string COMMENT '周一日期',
`sunday_date` string COMMENT '周日日期'
) COMMENT '活跃用户按周明细'
PARTITIONED BY (`wk_dt` string)
--将动态分区设置为非严格模式
set hive.exec.dynamic.partition.mode=nonstrict;
insert overwrite table dws_uv_detail_wk partition(wk_dt)
select mid_id,
concat_ws('|', collect_set(user_id)) user_id,
concat_ws('|', collect_set(version_code)) version_code,
concat_ws('|', collect_set(version_name)) version_name,
concat_ws('|', collect_set(lang)) lang,
concat_ws('|', collect_set(source)) source,
concat_ws('|', collect_set(os)) os,
concat_ws('|', collect_set(area)) area,
concat_ws('|', collect_set(model)) model,
concat_ws('|', collect_set(brand)) brand,
concat_ws('|', collect_set(sdk_version)) sdk_version,
concat_ws('|', collect_set(gmail)) gmail,
concat_ws('|', collect_set(height_width)) height_width,
concat_ws('|', collect_set(app_time)) app_time,
concat_ws('|', collect_set(network)) network,
concat_ws('|', collect_set(lng)) lng,
concat_ws('|', collect_set(lat)) lat,
date_add(next_day('2022-04-12','MO'),-7),
date_add(next_day('2022-04-12','MO'),-1),
concat(date_add(next_day('2022-04-12','MO'),-7),
'_',date_add(next_day('2022-04-12','MO'),-1))
from dws_uv_detail_day
where dt >= date_add(next_day('2022-04-12','MO'),-7)
and dt<= date_add(next_day('2022-04-12','MO'),-1)
group by mid_id;
select * from dws_uv_detail_wk
select wk_dt,count(*) from dws_uv_detail_wk group by wk_dt
--dws层的月活跃
drop table dws_uv_detail_mn
create external table dws_uv_detail_mn(
`mid_id` string COMMENT '设备唯一标识',
`user_id` string COMMENT '用户标识',
`version_code` string COMMENT '程序版本号',
`version_name` string COMMENT '程序版本名',
`lang` string COMMENT '系统语言',
`source` string COMMENT '渠道号',
`os` string COMMENT '安卓系统版本',
`area` string COMMENT '区域',
`model` string COMMENT '手机型号',
`brand` string COMMENT '手机品牌',
`sdk_version` string COMMENT 'sdkVersion',
`gmail` string COMMENT 'gmail',
`height_width` string COMMENT '屏幕宽高',
`app_time` string COMMENT '客户端日志产生时的时间',
`network` string COMMENT '网络模式',
`lng` string COMMENT '经度',
`lat` string COMMENT '纬度'
) COMMENT '活跃用户按月明细'
PARTITIONED BY (`mn` string)
--测试date_format函数
select date_format('2022-05-03','yyyy-MM')
insert overwrite table dws_uv_detail_mn partition(mn)
select mid_id,
concat_ws('|', collect_set(user_id)) user_id,
concat_ws('|', collect_set(version_code)) version_code,
concat_ws('|', collect_set(version_name)) version_name,
concat_ws('|', collect_set(lang)) lang,
concat_ws('|', collect_set(source)) source,
concat_ws('|', collect_set(os)) os,
concat_ws('|', collect_set(area)) area,
concat_ws('|', collect_set(model)) model,
concat_ws('|', collect_set(brand)) brand,
concat_ws('|', collect_set(sdk_version)) sdk_version,
concat_ws('|', collect_set(gmail)) gmail,
concat_ws('|', collect_set(height_width)) height_width,
concat_ws('|', collect_set(app_time)) app_time,
concat_ws('|', collect_set(network)) network,
concat_ws('|', collect_set(lng)) lng,
concat_ws('|', collect_set(lat)) lat,
date_format('2022-04-12','yyyy-MM')
from dws_uv_detail_day where
date_format(dt,'yyyy-MM')=date_format('2022-04-12','yyyy-MM')
group by mid_id;
select * from dws_uv_detail_mn
--ads层的活跃设备统计结果表
create external table ads_uv_count(
`dt` string COMMENT '统计日期',
`day_count` bigint COMMENT '当日用户数量',
`wk_count` bigint COMMENT '当周用户数量',
`mn_count` bigint COMMENT '当月用户数量',
`is_weekend` string COMMENT 'Y,N是否是周末,用于得到本周最终结果',
`is_monthend` string COMMENT 'Y,N是否是月末,用于得到本月最终结果'
) COMMENT '活跃设备数'
row format delimited fields terminated by '\t'
--测试if函数
select if('2022-05-08'=date_add(next_day('2022-05-03','mo'),-1),'Y','N')
--last_day()返回本月最后一天
select last_day('2022-05-08')
insert into table ads_uv_count
select '2022-04-12' dt,t1.c,t2.cc,t3.ccc,
if('2022-04-12'=date_add(next_day('2022-04-12','mo'),-1),'Y','N'),
if('2022-04-12'=last_day('2022-04-12'),'Y','N')
from
(select '2022-04-12' dt,count(*) c
from dws_uv_detail_day where dt='2022-04-12') t1
left join
(select '2022-04-12' dt,count(*) cc
from dws_uv_detail_wk where
wk_dt = concat(date_add(next_day('2022-04-12','mo'),-7),
'_' ,date_add(next_day('2022-04-12','mo'),-1))) t2
on t1.dt = t2.dt left join
(select '2022-04-12' dt,count(*) ccc
from dws_uv_detail_mn
where mn=date_format('2022-04-12','yyyy-MM')) t3
on t2.dt = t3.dt
?需求二 用户新增主题(每日新增)
--dws层的每日新增
create external table dws_new_mid_day
(
`mid_id` string COMMENT '设备唯一标识',
`user_id` string COMMENT '用户标识',
`version_code` string COMMENT '程序版本号',
`version_name` string COMMENT '程序版本名',
`lang` string COMMENT '系统语言',
`source` string COMMENT '渠道号',
`os` string COMMENT '安卓系统版本',
`area` string COMMENT '区域',
`model` string COMMENT '手机型号',
`brand` string COMMENT '手机品牌',
`sdk_version` string COMMENT 'sdkVersion',
`gmail` string COMMENT 'gmail',
`height_width` string COMMENT '屏幕宽高',
`app_time` string COMMENT '客户端日志产生时的时间',
`network` string COMMENT '网络模式',
`lng` string COMMENT '经度',
`lat` string COMMENT '纬度',
`create_date` string comment '创建时间'
) COMMENT '每日新增设备信息'
select * from dws_new_mid_day
insert into table dws_new_mid_day
select
u.mid_id,
u.user_id ,
u.version_code ,
u.version_name ,
u.lang ,
u.source,
u.os,
u.area,
u.model,
u.brand,
u.sdk_version,
u.gmail,
u.height_width,
u.app_time,
u.network,
u.lng,
u.lat,
'2022-04-12'
from dws_uv_detail_day u left join dws_new_mid_day n
on u.mid_id = n.mid_id
where u.dt = '2022-04-12' and n.mid_id is null;
--ads层的每日新增统计
create external table ads_new_mid_count(
`create_date` string comment '创建时间',
`new_mid_count` BIGINT comment '新增设备数量'
) COMMENT '每日新增设备信息数量'
row format delimited
fields terminated by '\t'
select * from ads_new_mid_count
insert into table ads_new_mid_count
select create_date,count(*)
from dws_new_mid_day
where create_date='2022-04-12'
group by create_date;
需求三 用户留存主题(一日、二日、三日留存)
-- dws层用户每日新增
create external table dws_user_retention_day
(
`mid_id` string COMMENT '设备唯一标识',
`user_id` string COMMENT '用户标识',
`version_code` string COMMENT '程序版本号',
`version_name` string COMMENT '程序版本名',
`lang` string COMMENT '系统语言',
`source` string COMMENT '渠道号',
`os` string COMMENT '安卓系统版本',
`area` string COMMENT '区域',
`model` string COMMENT '手机型号',
`brand` string COMMENT '手机品牌',
`sdk_version` string COMMENT 'sdkVersion',
`gmail` string COMMENT 'gmail',
`height_width` string COMMENT '屏幕宽高',
`app_time` string COMMENT '客户端日志产生时的时间',
`network` string COMMENT '网络模式',
`lng` string COMMENT '经度',
`lat` string COMMENT '纬度',
`create_date` string comment '设备新增时间',
`retention_day` int comment '截止当前日期留存天数'
) COMMENT '每日用户留存情况'
PARTITIONED BY (`dt` string)
select * from dws_user_retention_day
-- 求出4.1——1日、2日、3日留存情况
insert overwrite table dws_user_retention_day
partition(dt='2022-04-05')
select
nm.mid_id,
nm.user_id,
nm.version_code,
nm.version_name,
nm.lang,
nm.source,
nm.os,
nm.area,
nm.model,
nm.brand,
nm.sdk_version,
nm.gmail,
nm.height_width,
nm.app_time,
nm.network,
nm.lng,
nm.lat,
nm.create_date,
1 retention_day
from dws_uv_detail_day ud join dws_new_mid_day nm on ud.mid_id =nm.mid_id
where ud.dt='2022-04-05' and nm.create_date=date_add('2022-04-05',-1)
union all
select
nm.mid_id,
nm.user_id ,
nm.version_code ,
nm.version_name ,
nm.lang ,
nm.source,
nm.os,
nm.area,
nm.model,
nm.brand,
nm.sdk_version,
nm.gmail,
nm.height_width,
nm.app_time,
nm.network,
nm.lng,
nm.lat,
nm.create_date,
2 retention_day
from dws_uv_detail_day ud join dws_new_mid_day nm on ud.mid_id =nm.mid_id
where ud.dt='2022-04-05' and nm.create_date=date_add('2022-04-05',-2)
union all
select
nm.mid_id,
nm.user_id,
nm.version_code,
nm.version_name,
nm.lang,
nm.source,
nm.os,
nm.area,
nm.model,
nm.brand,
nm.sdk_version,
nm.gmail,
nm.height_width,
nm.app_time,
nm.network,
nm.lng,
nm.lat,
nm.create_date,
3 retention_day
from dws_uv_detail_day ud join dws_new_mid_day nm on ud.mid_id =nm.mid_id
where ud.dt='2022-04-05' and nm.create_date=date_add('2022-04-05',-3);
--ads用户留存统计表
create external table ads_user_retention_day_count(
`create_date` string comment '设备新增日期',
`retention_day` int comment '截止当前日期留存天数',
`retention_count` bigint comment '留存数量'
) COMMENT '每日用户留存情况'
row format delimited fields terminated by '\t'
select * from ads_user_retention_day_count
insert into table ads_user_retention_day_count
select
create_date,
retention_day,
count(*) retention_count
from dws_user_retention_day where dt='2022-04-05'
group by create_date,retention_day;
--asd 用户留存率
create external table ads_user_retention_day_rate
(
`stat_date` string comment '统计日期',
`create_date` string comment '设备新增日期',
`retention_day` int comment '截止当前日期留存天数',
`retention_count` bigint comment '留存数量',
`new_mid_count` bigint comment '当日设备新增数量',
`retention_ratio` decimal(10,2) comment '留存率'
) COMMENT '每日用户留存情况'
row format delimited fields terminated by '\t'
insert into table ads_user_retention_day_rate
select
'2022-04-05',
t1.create_date,
t1.retention_day,
t1.retention_count,
t2.new_mid_count,
t1.retention_count / t2.new_mid_count * 100
from ads_user_retention_day_count t1
join ads_new_mid_count t2
on t1.create_date = t2.create_date
where date_add(t1.create_date,t1.retention_day) = '2022-04-05'
select * from ads_user_retention_day_rate
?需求四 沉默用户主题
--ads层的沉默用户表
create external table ads_silent_count(
`dt` string COMMENT '统计日期',
`silent_count` bigint COMMENT '沉默设备数'
) row format delimited fields terminated by '\t'
insert into table ads_silent_count
select '2022-04-12'dt,count(*) from (
select mid_id,count(mid_id) cc
from dws_uv_detail_day where dt<='2022-04-12'
group by mid_id having count(mid_id)=1 and
max(dt)<date_add('2022-04-12',-7)) tt
select * from ads_silent_count
需求五 本周回流用户
--ads层的本周回流
create external table ads_back_count(
`dt` string COMMENT '统计日期',
`wk_dt` string COMMENT '统计日期所在周',
`wastage_count` bigint COMMENT '回流设备数'
) row format delimited fields terminated by '\t'
insert into table ads_back_count
select '2022-04-05' dt,concat(date_add(next_day('2022-04-05','mo'),-7),
'_',date_add(next_day('2022-04-05','mo'),-1)) wk_dt,count(*) from
--select t.mid_id from
( select mid_id from dws_uv_detail_wk where wk_dt=
concat(date_add(next_day('2022-04-05','mo'),-7),
'_',date_add(next_day('2022-04-05','mo'),-1)) ) t
left join
( select mid_id from dws_new_mid_day
where create_date>=date_add(next_day('2022-04-05','mo'),-7)
and create_date<=date_add(next_day('2022-04-05','mo'),-1) ) tt
on t.mid_id=tt.mid_id left join
( select mid_id from dws_uv_detail_wk where wk_dt=
concat(date_add(next_day('2022-04-05','mo'),-14),
'_',date_add(next_day('2022-04-05','mo'),-8)) ) ttt
on t.mid_id=ttt.mid_id
where tt.mid_id is null and ttt.mid_id is null
select * from ads_back_count
需求六 流失用户数
--ads层的流失用户数
create external table ads_wastage_count(
`dt` string COMMENT '统计日期',
`wastage_count` bigint COMMENT '流失设备数'
)row format delimited fields terminated by '\t'
select * from ads_wastage_count
insert into table ads_wastage_count
select '2022-04-12',count(*) from
( select mid_id from dws_uv_detail_day group by mid_id
having max(dt)<=date_add('2022-04-12',-7) ) tt
|