IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 大数据 -> 006_flink源码分析-taskmanager的启动 -> 正文阅读

[大数据]006_flink源码分析-taskmanager的启动

TaskManagerRunner 启动源码分析

taskmanger

TaskManager 是 Flink 的从节点,它负责 Flink 中集群的worker节点上 slot 资源的管理以及具体 task 的执行。TaskManager 上的基本资源单位是 slot,一个作业的 task 最终会部署在一个 TaskManager 的 slot上运行,TaskManager 会负责维护本地的 slot 资源列表,并来与 Flink Master节点 和作业的主节点 JobMaster 通信。

public class TaskManagerRunner implements FatalErrorHandler, AutoCloseableAsync {

从注释我们也能直到:该类是taskmanager无论在yarn模式下还是在standalone模式下的执行入口,它会构建相关组件的网络,io管理,内存管理,RPC服务,HA服务等。

入口

启动该类直接调用其main方法:

// --------------------------------------------------------------------------------------------
//  Static entry point
// --------------------------------------------------------------------------------------------

public static void main(String[] args) throws Exception {
   // startup checks and logging
   EnvironmentInformation.logEnvironmentInfo(LOG, "TaskManager", args);
   SignalHandler.register(LOG);
   JvmShutdownSafeguard.installAsShutdownHook(LOG);

   long maxOpenFileHandles = EnvironmentInformation.getOpenFileHandlesLimit();

   if (maxOpenFileHandles != -1L) {
      LOG.info("Maximum number of open file descriptors is {}.", maxOpenFileHandles);
   } else {
      LOG.info("Cannot determine the maximum number of open file descriptors");
   }
   //进入这里
   runTaskManagerSecurely(args);
}

进入runTaskManagerSecurely(args, ResourceID.generate());

public static void runTaskManagerSecurely(String[] args) {
   try {
      //加载配置,解析 args 和 flink-conf.yaml 得到配置信息
      Configuration configuration = loadConfiguration(args);
      //进入
      runTaskManagerSecurely(configuration);
   } catch (Throwable t) {
      final Throwable strippedThrowable = ExceptionUtils.stripException(t, UndeclaredThrowableException.class);
      LOG.error("TaskManager initialization failed.", strippedThrowable);
      System.exit(STARTUP_FAILURE_RETURN_CODE);
   }
}

进入runTaskManagerSecurely(configuration);:

public static void runTaskManagerSecurely(Configuration configuration) throws Exception {
   replaceGracefulExitWithHaltIfConfigured(configuration);
   final PluginManager pluginManager = PluginUtils.createPluginManagerFromRootFolder(configuration);
   //初始化文件系统,只是初始化了一些配置,一般认为就是hadoop文件系统
   FileSystem.initialize(configuration, pluginManager);

   SecurityUtils.install(new SecurityConfiguration(configuration));

   SecurityUtils.getInstalledContext().runSecured(() -> {
      //运行taskmanager
      runTaskManager(configuration, pluginManager);
      return null;
   });
}

runTaskManager(configuration, pluginManager);

public static void runTaskManager(Configuration configuration, PluginManager pluginManager) throws Exception {
   //1.初始化TaskManagerRunner
   //(1)TaskManagerRunner::createTaskExecutorService
   //(2)new TaskManagerRunner
   final TaskManagerRunner taskManagerRunner = new TaskManagerRunner(configuration, pluginManager, TaskManagerRunner::createTaskExecutorService);
   //最终会调用TaskExecutor的onStart方法
   taskManagerRunner.start();
}

这里进入了核心部分:

TaskManagerRunner::createTaskExecutorService

public static TaskExecutorService createTaskExecutorService(
      Configuration configuration,
      ResourceID resourceID,
      RpcService rpcService,
      HighAvailabilityServices highAvailabilityServices,
      HeartbeatServices heartbeatServices,
      MetricRegistry metricRegistry,
      BlobCacheService blobCacheService,
      boolean localCommunicationOnly,
      ExternalResourceInfoProvider externalResourceInfoProvider,
      FatalErrorHandler fatalErrorHandler) throws Exception {
   //todo 创建TaskExecutor
   final TaskExecutor taskExecutor = startTaskManager(
         configuration,
         resourceID,
         rpcService,
         highAvailabilityServices,
         heartbeatServices,
         metricRegistry,
         blobCacheService,
         localCommunicationOnly,
         externalResourceInfoProvider,
         fatalErrorHandler);
   //返回TaskExecutorService对象
   return TaskExecutorToServiceAdapter.createFor(taskExecutor);
}

这里最重要的是创建startTaskManager,后面的return只是包装类一个TaskExecutorService对象返回,所以进入startTaskManager方法:

public static TaskExecutor startTaskManager(
      Configuration configuration,
      ResourceID resourceID,
      RpcService rpcService,
      HighAvailabilityServices highAvailabilityServices,
      HeartbeatServices heartbeatServices,
      MetricRegistry metricRegistry,
      BlobCacheService blobCacheService,
      boolean localCommunicationOnly,
      ExternalResourceInfoProvider externalResourceInfoProvider,
      FatalErrorHandler fatalErrorHandler) throws Exception {
   String externalAddress = rpcService.getAddress();

   final TaskExecutorResourceSpec taskExecutorResourceSpec = TaskExecutorResourceUtils.resourceSpecFromConfig(configuration);

   TaskManagerServicesConfiguration taskManagerServicesConfiguration =
      TaskManagerServicesConfiguration.fromConfiguration(
         configuration,
         resourceID,
         externalAddress,
         localCommunicationOnly,
         taskExecutorResourceSpec);

   Tuple2<TaskManagerMetricGroup, MetricGroup> taskManagerMetricGroup = MetricUtils.instantiateTaskManagerMetricGroup(
      metricRegistry,
      externalAddress,
      resourceID,
      taskManagerServicesConfiguration.getSystemResourceMetricsProbingInterval());
   //taskexecutor 线程池
   final ExecutorService ioExecutor = Executors.newFixedThreadPool(
      taskManagerServicesConfiguration.getNumIoThreads(),
      new ExecutorThreadFactory("flink-taskexecutor-io"));
   //重要步骤 :创建TaskManagerServices:
   //包含了kvStateService,slottable,netty连接等重要组件
   TaskManagerServices taskManagerServices = TaskManagerServices.fromConfiguration(
      taskManagerServicesConfiguration,
      blobCacheService.getPermanentBlobService(),
      taskManagerMetricGroup.f1,
      ioExecutor,
      fatalErrorHandler);

   MetricUtils.instantiateFlinkMemoryMetricGroup(
      taskManagerMetricGroup.f1,
      taskManagerServices.getTaskSlotTable(),
      taskManagerServices::getManagedMemorySize);

   TaskManagerConfiguration taskManagerConfiguration =
      TaskManagerConfiguration.fromConfiguration(configuration, taskExecutorResourceSpec, externalAddress);

   String metricQueryServiceAddress = metricRegistry.getMetricQueryServiceGatewayRpcAddress();
   //初始化了RPC服务及两个心跳服务
   return new TaskExecutor(
      rpcService,
      taskManagerConfiguration,
      highAvailabilityServices,
      taskManagerServices,
      externalResourceInfoProvider,
      heartbeatServices,
      taskManagerMetricGroup.f0,
      metricQueryServiceAddress,
      blobCacheService,
      fatalErrorHandler,
      new TaskExecutorPartitionTrackerImpl(taskManagerServices.getShuffleEnvironment()),
      createBackPressureSampleService(configuration, rpcService.getScheduledExecutor()));
}

这里又有两个重要方法:TaskManagerServices.fromConfiguration和new TaskExecutor,先看第一个:

public static TaskManagerServices fromConfiguration(
      TaskManagerServicesConfiguration taskManagerServicesConfiguration,
      PermanentBlobService permanentBlobService,
      MetricGroup taskManagerMetricGroup,
      ExecutorService ioExecutor,
      FatalErrorHandler fatalErrorHandler) throws Exception {

   // pre-start checks
   checkTempDirs(taskManagerServicesConfiguration.getTmpDirPaths());

   final TaskEventDispatcher taskEventDispatcher = new TaskEventDispatcher();

   // start the I/O manager, it will create some temp directories.
   //IoManager 用于创建一些临时目录
   final IOManager ioManager = new IOManagerAsync(taskManagerServicesConfiguration.getTmpDirPaths());
   //重要组件,包含了nettyserver和nettyClient,实现类是NettyShuffleEnvironment
   final ShuffleEnvironment<?, ?> shuffleEnvironment = createShuffleEnvironment(
      taskManagerServicesConfiguration,
      taskEventDispatcher,
      taskManagerMetricGroup,
      ioExecutor);
   //启动nettyServer和nettyClient
   final int listeningDataPort = shuffleEnvironment.start();

   //KvStateService:每个taskExecutor上会有一个KvStateService服务,该服务用于task来注册状态,包装了一个kvStateServer
   final KvStateService kvStateService = KvStateService.fromConfiguration(taskManagerServicesConfiguration);
   //启动KvStateService,实际启动了一个netty服务,用于获取kvstate
   kvStateService.start();

   final UnresolvedTaskManagerLocation unresolvedTaskManagerLocation = new UnresolvedTaskManagerLocation(
      taskManagerServicesConfiguration.getResourceID(),
      taskManagerServicesConfiguration.getExternalAddress(),
      // we expose the task manager location with the listening port
      // iff the external data port is not explicitly defined
      taskManagerServicesConfiguration.getExternalDataPort() > 0 ?
         taskManagerServicesConfiguration.getExternalDataPort() :
         listeningDataPort);

   //Broadcast服务manager
   final BroadcastVariableManager broadcastVariableManager = new BroadcastVariableManager();

   //taskSlotTable
   final TaskSlotTable<Task> taskSlotTable = createTaskSlotTable(
      taskManagerServicesConfiguration.getNumberOfSlots(),
      taskManagerServicesConfiguration.getTaskExecutorResourceSpec(),
      taskManagerServicesConfiguration.getTimerServiceShutdownTimeout(),
      taskManagerServicesConfiguration.getPageSize(),
      ioExecutor);

   final JobTable jobTable = DefaultJobTable.create();
   //获取jobmanager leader节点
   final JobLeaderService jobLeaderService = new DefaultJobLeaderService(unresolvedTaskManagerLocation, taskManagerServicesConfiguration.getRetryingRegistrationConfiguration());

   final String[] stateRootDirectoryStrings = taskManagerServicesConfiguration.getLocalRecoveryStateRootDirectories();

   final File[] stateRootDirectoryFiles = new File[stateRootDirectoryStrings.length];

   for (int i = 0; i < stateRootDirectoryStrings.length; ++i) {
      stateRootDirectoryFiles[i] = new File(stateRootDirectoryStrings[i], LOCAL_STATE_SUB_DIRECTORY_ROOT);
   }

   final TaskExecutorLocalStateStoresManager taskStateManager = new TaskExecutorLocalStateStoresManager(
      taskManagerServicesConfiguration.isLocalRecoveryEnabled(),
      stateRootDirectoryFiles,
      ioExecutor);

   final boolean failOnJvmMetaspaceOomError =
      taskManagerServicesConfiguration.getConfiguration().getBoolean(CoreOptions.FAIL_ON_USER_CLASS_LOADING_METASPACE_OOM);
   final boolean checkClassLoaderLeak =
      taskManagerServicesConfiguration.getConfiguration().getBoolean(CoreOptions.CHECK_LEAKED_CLASSLOADER);
   final LibraryCacheManager libraryCacheManager = new BlobLibraryCacheManager(
      permanentBlobService,
      BlobLibraryCacheManager.defaultClassLoaderFactory(
         taskManagerServicesConfiguration.getClassLoaderResolveOrder(),
         taskManagerServicesConfiguration.getAlwaysParentFirstLoaderPatterns(),
         failOnJvmMetaspaceOomError ? fatalErrorHandler : null,
         checkClassLoaderLeak));
   //初始化TaskManagerServices成员变量
   return new TaskManagerServices(
      unresolvedTaskManagerLocation,
      taskManagerServicesConfiguration.getManagedMemorySize().getBytes(),
      ioManager,
      shuffleEnvironment,
      kvStateService,
      broadcastVariableManager,
      taskSlotTable,
      jobTable,
      jobLeaderService,
      taskStateManager,
      taskEventDispatcher,
      ioExecutor,
      libraryCacheManager);
}

这里的代码非常重要:
(1)ShuffleEnvironment:这个类封装了netty server和netty client,实现类是NettyShuffleEnvironment,flink的task之间数据流的传递全部使用的是netty的channel来传递,而每两个taskmanager之间都会启动唯一的nettyserver-nettyclient这样的cs结构,如果taskmanager有两个slot:slot1和slot2,与另外一个taskmanager上的两个slot:slot3和slot4通信,那么会复用这个netty连接通道来传输数据。

(2)KvStateService:每个taskExecutor上会有一个KvStateService服务,该服务用于task来注册状态,包装了一个kvStateServer

(3)初始化BroadcastVariableManager,管理广播变量的组件,广播变量如配置等通过一个source广播过来,taskmanager接收进来后放在自己的内存里,就是通过该组件实现。

(4)JobLeaderService:获取jobleader服务,通过前面的选举机制可以知道,leader会把信息写道zk,这里从zk读取就行了。

(5)最后,返回new TaskManagerServices,TaskManagerServices的构造并没有太多逻辑,都是对变量的赋值操作。

这几个具体组件不再深入分析,只需要知道createTaskExecutorService这个方法主要启动了这些组件。

new TaskManagerRunner

TaskManagerRunner::createTaskExecutorService执行之后,来到new TaskManagerRunner方法:

public TaskManagerRunner(
      Configuration configuration,
      PluginManager pluginManager,
      TaskExecutorServiceFactory taskExecutorServiceFactory) throws Exception {
   this.configuration = checkNotNull(configuration);

   timeout = AkkaUtils.getTimeoutAsTime(configuration);
   //启动一个与硬件核数相同的线程个数的线程池
   this.executor = java.util.concurrent.Executors.newScheduledThreadPool(
      Hardware.getNumberCPUCores(),
      new ExecutorThreadFactory("taskmanager-future"));
   //高可用服务:基于zk实现
   highAvailabilityServices = HighAvailabilityServicesUtils.createHighAvailabilityServices(
      configuration,
      executor,
      HighAvailabilityServicesUtils.AddressResolution.NO_ADDRESS_RESOLUTION);

   JMXService.startInstance(configuration.getString(JMXServerOptions.JMX_SERVER_PORT));
   //创建rpc服务并启动
   rpcService = createRpcService(configuration, highAvailabilityServices);

   this.resourceId = getTaskManagerResourceID(configuration, rpcService.getAddress(), rpcService.getPort());
   //创建心跳服务
   HeartbeatServices heartbeatServices = HeartbeatServices.fromConfiguration(configuration);

   metricRegistry = new MetricRegistryImpl(
      MetricRegistryConfiguration.fromConfiguration(configuration),
      ReporterSetup.fromConfiguration(configuration, pluginManager));

   final RpcService metricQueryServiceRpcService = MetricUtils.startRemoteMetricsRpcService(configuration, rpcService.getAddress());
   metricRegistry.startQueryService(metricQueryServiceRpcService, resourceId);
   //BlobCacheService,内部会启动两个定时任务:PermanentBlobCleanupTask 和 TransientBlobCleanupTask
   blobCacheService = new BlobCacheService(
      configuration, highAvailabilityServices.createBlobStore(), null
   );

   final ExternalResourceInfoProvider externalResourceInfoProvider =
      ExternalResourceUtils.createStaticExternalResourceInfoProvider(
         ExternalResourceUtils.getExternalResourceAmountMap(configuration),
         ExternalResourceUtils.externalResourceDriversFromConfig(configuration, pluginManager));
   //创建taskExecutor并且启动起来
   taskExecutorService = taskExecutorServiceFactory.createTaskExecutor(
      this.configuration,
      this.resourceId,
      rpcService,
      highAvailabilityServices,
      heartbeatServices,
      metricRegistry,
      blobCacheService,
      false,
      externalResourceInfoProvider,
      this);

   this.terminationFuture = new CompletableFuture<>();
   this.shutdown = false;
   handleUnexpectedTaskExecutorServiceTermination();

   MemoryLogger.startIfConfigured(LOG, configuration, terminationFuture);
}

最后的taskExecutorServiceFactory.createTaskExecutor实际调用的就是上面第一步分析的TaskManagerRunner::createTaskExecutorService这句代码

final TaskManagerRunner taskManagerRunner = new TaskManagerRunner(configuration, pluginManager, TaskManagerRunner::createTaskExecutorService);

在创建完成 taskManagerRunner后就进入 taskManagerRunner的start方法了:

taskManagerRunner.start();

这里的start方法经过层层调用:
taskExecutorService.start();
-> taskExecutor.start();
-> rpcServer.start();
-> rpcEndpoint.tell(ControlMessages.START, ActorRef.noSender());

@Override
public void start() {
   rpcEndpoint.tell(ControlMessages.START, ActorRef.noSender());
}

最终调用的是RpcEndpoint的tell方法!因此根据flink RPC框架的套路,必然会调用到TaskExecutor的onStart方法,到这里:

//taskExecutor集成了RpcEndpoint
public class TaskExecutor extends RpcEndpoint implements TaskExecutorGateway
...
//调用到这里的onStart
@Override
public void onStart() throws Exception {
   try {
      //TaskExecutor执行start的时候调用到这里
      startTaskExecutorServices();
   } catch (Throwable t) {
      final TaskManagerException exception = new TaskManagerException(String.format("Could not start the TaskExecutor %s", getAddress()), t);
      onFatalError(exception);
      throw exception;
   }
   //注册超时
   startRegistrationTimeout();
}

两件事:继续执行start和注册超时服务,其中超时服务默认五分钟的超时时间。
看startTaskExecutorServices();:

private void startTaskExecutorServices() throws Exception {
   try {
      // start by connecting to the ResourceManager
      //监听器,resourcemanager地址发生改变的时候重新连接到resourcemanager
      resourceManagerLeaderRetriever.start(new ResourceManagerLeaderListener());
        //启动taskSlottable
      // tell the task slot table who's responsible for the task slot actions
      taskSlotTable.start(new SlotActionsImpl(), getMainThreadExecutor());

      // start the job leader service
      //用于监听jobmanager的一个服务
      jobLeaderService.start(getAddress(), getRpcService(), haServices, new JobLeaderListenerImpl());
      //用于为task注册文件缓存的服务
      fileCache = new FileCache(taskManagerConfiguration.getTmpDirectories(), blobCacheService.getPermanentBlobService());
   } catch (Exception e) {
      handleStartTaskExecutorServicesException(e);
   }
}

首先,对Resourcemanager地址做一个监听,如果RM发生变化则重新连接,因为要对其进行注册,心跳,资源汇报等工作。
然后,TaskManager管理着持有的slot,在TaskManager中这些slot的管理就是taskSlotTable来管理的。
第三,监听jobmanager服务。
最后,启动一个文件缓存服务。

到了这里taskmanager就启动完成了,这里只针对taskmanager做一个抽象组件启动流程的大概描述,深入每个组件的细节需要后面挨个分析,最后做个总结:

总结

开始从main方法进入启动流程
runTaskManagerSecurely(configuration, resourceID);
->runTaskManagerSecurely(configuration, resourceID);
->runTaskManager(configuration, resourceID, pluginManager);
->taskManagerRunner = new TaskManagerRunner(…)
{
初始化了一个 TaskManagerServices,并启动一堆服务
初始化 TaskExecutor,TaskExecutor 它是一个 RpcEndpoint,启动会调用它的onStart方法
}
->taskManagerRunner = new TaskManagerRunner(…);
{
启动highAvailabilityServices
创建rpcService
创建heartbeatServices
创建blobCacheService
创建taskExecutorService
}
->TaskManagerRunner::createTaskExecutorService
->启动 TaskManagerRunner,然后跳转到 TaskExecutor 中的 onStart() 方法
taskManagerRunner.start();
taskExecutor.start();

到此为止,TaskManager启动完毕!

  大数据 最新文章
实现Kafka至少消费一次
亚马逊云科技:还在苦于ETL?Zero ETL的时代
初探MapReduce
【SpringBoot框架篇】32.基于注解+redis实现
Elasticsearch:如何减少 Elasticsearch 集
Go redis操作
Redis面试题
专题五 Redis高并发场景
基于GBase8s和Calcite的多数据源查询
Redis——底层数据结构原理
上一篇文章      下一篇文章      查看所有文章
加:2022-05-07 11:15:14  更:2022-05-07 11:15:31 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/16 8:17:03-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码