IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 大数据 -> Redis高可用:主从复制、哨兵集群、Cluster 切片集群 -> 正文阅读

[大数据]Redis高可用:主从复制、哨兵集群、Cluster 切片集群

前言:Redis高可用包括两个层面,一个就是数据尽量减少丢失;另外一个就是保证Redis服务不中断。对于尽量减少数据丢失,可以通过AOF和RDB持久化机制保证;对于保证服务不中断的话,Redis就不能单点部署。所以为了提升Redis的并发能力和避免单点故障,可以搭建Redis集群架构:Redis主从、Redis哨兵或Redis Cluster集群。


一、Redis主从同步

主从同步复制功能是Redis高可用的基础,后面介绍的哨兵和Cluster集群都是在主从同步复制的基础上实现高可用的。

Redis 的同步方式有:主从同步、从从同步(由于全部都由 master 同步的话,会损耗性能,所以部分的 slave 会通过 slave 之间进行同步)。

1.1 Redsi主从概念

  • Redis主从模式,就是部署多台Redis服务器,有主库和从库,它们之间通过主从复制,以保证数据副本的一致。

  • 主从库之间采用的是读写分离的方式,其中主库负责写操作,从库则负责读操作。

  • 如果Redis主库挂了,切换其中的从库成为主库。

1.2 Redis 主从同步过程

Redis主从同步包括三个阶段:

第一阶段:主从库间建立连接、协商同步。

  • 从库向主库发送psync?命令,告诉它要进行数据同步。

  • 主库收到?psync?命令后,响应FULLRESYNC命令(它表示第一次复制采用的是全量复制),并带上主库runID和主库目前的复制进度offset

第二阶段:主库把数据同步到从库,从库收到数据后,完成本地加载。

  • 主库执行bgsave命令,生成RDB文件,接着将文件发给从库。从库接收到RDB文件后,会先清空当前数据库,然后加载 RDB 文件。

  • 主库把数据同步到从库的过程中,新来的写操作,会记录到replication buffer

第三阶段,主库把新写的命令,发送到从库。

主库完成RDB发送后,会把replication buffer中的修改操作发给从库,从库再重新执行这些操作。这样主从库就实现同步了。

1.3 Redis主从的一些注意点

1.3.1 主从数据不一致

因为主从复制是异步进行的,如果从库滞后执行,则会导致主从数据不一致

主从数据不一致一般有两个原因:

  • 主从库网络延迟。

  • 从库收到了主从命令,但是它正在执行阻塞性的命令(如hgetall等)。

如何解决主从数据不一致问题呢?

  1. 可以换更好的硬件配置,保证网络畅通。

  2. 监控主从库间的复制进度

1.3.2 读取过期数据

Redis删除数据有这几种策略:

  • 惰性删除:只有当访问一个key时,才会判断该key是否已过期,过期则清除。

  • 定期删除:每隔一定的时间,会扫描一定数量的数据库的expires字典中一定数量的key,并清除其中已过期的key。

  • 主动删除:当前已用内存超过最大限定时,触发主动清理策略。

如果使用Redis版本低于3.2,读从库时,并不会判断数据是否过期,而是会返回过期数据。而3.2 版本后,Redis做了改进,如果读到的数据已经过期了,从库不会删除,却会返回空值,避免了客户端读到过期数据

因此,在主从Redis模式下,尽量使用?Redis 3.2以上的版本。

1.3.3 一主多从,全量复制时主库压力问题

如果是一主多从模式,从库很多的时候,如果每个从库都要和主库进行全量复制的话,主库的压力是很大的。因为主库fork进程生成RDB,这个fork的过程是会阻塞主线程处理正常请求的。同时,传输大的RDB文件也会占用主库的网络宽带。

可以使用主-从-从模式解决。什么是主从从模式呢?其实就是部署主从集群时,选择硬件网络配置比较好的一个从库,让它跟部分从库再建立主从关系。如图:

1.3.4 主从网络断了怎么办呢?

主从库完成了全量复制后,它们之间会维护一个网络长连接,用于主库后续收到写命令传输到从库,它可以避免频繁建立连接的开销。但是,如果网络断开重连后,是否还需要进行一次全量复制呢?

如果是Redis 2.8之前,从库和主库重连后,确实会再进行一次全量复制,但是这样开销就很大。而Redis 2.8之后做了优化,重连后采用增量复制方式,即把主从库网络断连期间主库收到的写命令,同步给从库。

主从库重连后,就是利用repl_backlog_buffer实现增量复制。

当主从库断开连接后,主库会把断连期间收到的写操作命令,写入replication buffer,同时也会把这些操作命令写入repl_backlog_buffer这个缓冲区。repl_backlog_buffer是一个环形缓冲区,主库会记录自己写到的位置,从库则会记录自己已经读到的位置。


二、Redis Sentinel 哨兵集群

在 Redis 主从复制模式下,一旦主节点由于故障不能提供服务,需要人工将从节点晋升为主节点,同时还要通知应用方更新主节点地址,对于很多应用方是无法接受的。于是 Redis 从2.8开始正式提供了 Redis Sentinel 哨兵机制来解决这个问题,做到真正的不用人工参与的高可用故障转移。

Redis 的主从切换是通过哨兵来解决的。这里哨兵主要解决的问题就是:当 master 挂了的情况下,如果在短时间内重新选举出一个新的 master 。

进阶指南!Redis 用法总结

Sentinel 集群是一个由 3-5 个(可以更多)节点组成的,用来监听整个 Redis 的集群,如果发现 master 不可用的时候,会关闭和断开全部的与 master 相连的旧链接。这个时候 Sentinel 会完成选举和故障转移,新的请求则会转到新到 master 中。

2.1 哨兵作用

哨兵其实是一个运行在特殊模式下的Redis进程。它有三个作用,分别是:监控、自动选主切换(简称选主)、通知

哨兵进程在运行期间,监视所有的Redis主节点和从节点。它通过周期性给主从库发送PING命令,检测主从库是否挂了。如果从库没有在规定时间内响应哨兵的PING命令,哨兵就会把它标记为下线状态;如果主库没有在规定时间内响应哨兵的PING命令,哨兵则会判定主库下线,然后开始切换到选主任务。

所谓选主,其实就是从多个从库中,按照一定规则,选出一个当做主库。至于通知呢,就是选出主库后,哨兵把新主库的连接信息发给其他从库,让它们和新主库建立主从关系。同时,哨兵也会把新主库的连接信息通知给客户端,让它们把请求操作发到新主库上。

2.2 哨兵如何判定主库下线

哨兵是如何判断主库是否下线的呢?我们先来了解两个基础概念哈:主观下线和客观下线

  • 哨兵进程向主库、从库发送PING命令,如果主库或者从库没有在规定的时间内响应PING命令,哨兵就把它标记为主观下线

  • 如果是主库被标记为主观下线,则正在监视这个主库的所有哨兵要以每秒一次的频率,以确认主库是否真的进入了主观下线。当有多数的哨兵(一般少数服从多数,由 Redis 管理员自行设定的一个值)在指定的时间范围内确认主库的确进入了主观下线状态,则主库会被标记为客观下线。这样做的目的就是避免对主库的误判,以减少没有必要的主从切换,减少不必要的开销。

假设我们有N个哨兵实例,如果有N/2+1个实例判断主库主观下线,此时就可以把节点标记为客观下线,就可以做主从切换了。

2.3 哨兵是如何选主的?

如果明确主库已经客观下线了,哨兵就开始了选主模式。

哨兵选主包括两大过程,分别是:过滤和打分。其实就是在多个从库中,先按照一定的筛选条件,把不符合条件的从库过滤掉。然后再按照一定的规则,给剩下的从库逐个打分,将得分最高的从库选为新主库

  • 选主时,会判断从库的状态,如果已经下线,就直接过滤

  • 如果从库网络不好,老是超时,也会被过滤掉。看这个参数down-after-milliseconds,它表示我们认定主从库断连的最大连接超时时间。

  • 过滤掉了不适合做主库的从库后,就可以给剩下的从库打分,按这三个规则打分:从库优先级、从库复制进度以及从库ID号

  • 从库优先级最高的话,打分就越高,优先级可以通过slave-priority配置。如果优先级一样,就选与旧的主库复制进度最快的从库。如果优先级和从库进度都一样,从库ID 号小的打分高。

2.4 由哪个哨兵执行主从切换呢?

一个哨兵标记主库为主观下线后,它会征求其他哨兵的意见,确认主库是否的确进入了主观下线状态。它向其他实例哨兵发送is-master-down-by-addr命令。其他哨兵会根据自己和主库的连接情况,回应YN(Y 表示赞成,N表示反对票)。如果这个哨兵获取得足够多的赞成票数(quorum配置),主库会被标记为客观下线

标记主库客观下线的这个哨兵,紧接着向其他哨兵发送命令,再发起投票,希望它可以来执行主从切换。这个投票过程称为Leader 选举。因为最终执行主从切换的哨兵称为Leader,投票过程就是确定Leader。一个哨兵想成为Leader需要满足两个条件:

  • 需要拿到num(sentinels)/2+1的赞成票。

  • 并且拿到的票数需要大于等于哨兵配置文件中的quorum值。

举个例子,假设有3个哨兵。配置的quorum值为2。即一个一个哨兵想成为Leader至少需要拿到2张票。?

2.5 故障转移

假设哨兵模式架构如下,有三个哨兵,一个主库M,两个从库S1和S2。

当哨兵检测到Redis主库M1出现故障,那么哨兵需要对集群进行故障转移。假设选出了哨兵3作为Leader。故障转移流程如下:

  1. 从库S1解除从节点身份,升级为新主库

  2. 从库S2成为新主库的从库

  3. 原主节点恢复也变成新主库的从节点

  4. 通知客户端应用程序新主节点的地址。

故障转移后:


三、Redis Cluster 切片集群

Redis Sentinel 完美的解决了自动故障转移问题,但是当遇到单机内存、并发、流量等瓶颈时,我们就需要考虑采用 Redis Cluster 架构方案达到Redis数据分布式存储和负载均衡的目的。

3.1 有了Redis哨兵机制,为什么还出现Redis Cluster?

Redis 哨兵模式基于主从模式,实现读写分离,它还可以自动切换,系统可用性更高。但是它每个节点存储的数据是一样的,浪费内存,并且不好在线扩容。因此,Redis Cluster 应运而生,它是从Redis3.0版本开始,官方提供的一种实现切片集群的方案,实现了Redis的分布式存储

Redis Cluster 对数据进行分片,也就是说每台Redis节点上存储不同的内容,来解决在线扩容的问题。并且,它可以保存大量数据,即分散数据到各个Redis实例,还提供复制和故障转移的功能。

比如你一个Redis实例保存15G甚至更大的数据,响应就会很慢,这是因为Redis RDB 持久化机制导致的,Redis会fork子进程完成 RDB 持久化操作,fork执行的耗时与 Redis 数据量成正相关。

这时候你很容易想到,把15G数据分散来存储就好了嘛。这就是Redis切片集群的初衷。切片集群是啥呢?来看个例子,如果你要用Redis保存15G的数据,可以用单实例Redis,或者3台Redis实例组成切片集群,对比如下:

既然数据是分片分布到不同Redis实例的,那客户端到底是怎么确定想要访问的数据在哪个实例上呢?我们一起来看下Reids Cluster是怎么做的哈。

3.2 Redis Cluster集群工作原理

?Redis 集群通过哈希槽指派机制来决定写命令应该被分配到那个节点。整个集群对应的槽是由?16384?大小的二进制数组组成,集群中每个主节点分配一部分槽,每条写命令落到二进制数组中的某个位置,该位置被分配给了哪个节点,则对应的命令就由该节点去执行。槽指派对应的二进制数组如下图所示:

进阶指南!Redis 用法总结

从上图可以看到:节点 1 只负责 执行 0 - 4999 的槽位,而节点 2 负责执行 5000 - 9999,节点 3 执行 9999- 16383 。当进行写的时候:

set key value

命令通过?CRC16(key) & 16383 = 6789(假设结果),由于节点 2 负责 5000~9999 的槽位,则该命令的结果 6789 最终由节点 2 执行。当然如果在节点 2 执行一条命令时,假设通过 CRC 计算后得到的值为 567,则其应该由节点 1 执行,此时命令会进行转向操作,将要执行的命令流转到节点 1 上去执行。

进阶指南!Redis 用法总结

3.3?哈希槽(Hash Slot)

Redis Cluster方案采用哈希槽(Hash Slot),来处理数据和实例之间的映射关系。

一个切片集群被分为16384个slot(槽),每个进入Redis的键值对,根据key进行散列,分配到这16384插槽中的一个。使用的哈希映射也比较简单,用CRC16算法计算出一个16bit的值,再对16384取模。数据库中的每个键都属于这16384个槽的其中一个,集群中的每个节点都可以处理这16384个槽。

集群中的每个节点负责一部分的哈希槽,假设当前集群有A、B、C3个节点,每个节点上负责的哈希槽数 =16384/3,那么可能存在的一种分配:

  • 节点A负责0~5460号哈希槽

  • 节点B负责5461~10922号哈希槽

  • 节点C负责10923~16383号哈希槽

客户端给一个Redis实例发送数据读写操作时,如果这个实例上并没有相应的数据,会怎么样呢?MOVED重定向和ASK重定向了解一下哈

3.4 ?MOVED重定向和ASK重定向

在Redis cluster模式下,节点对请求的处理过程如下:

  1. 通过哈希槽映射,检查当前Redis key是否存在当前节点

  2. 若哈希槽不是由自身节点负责,就返回MOVED重定向

  3. 若哈希槽确实由自身负责,且key在slot中,则返回该key对应结果

  4. 若Redis key不存在此哈希槽中,检查该哈希槽是否正在迁出(MIGRATING)?

  5. 若Redis key正在迁出,返回ASK错误重定向客户端到迁移的目的服务器上

  6. 若哈希槽未迁出,检查哈希槽是否导入中?

  7. 若哈希槽导入中且有ASKING标记,则直接操作,否则返回MOVED重定向

3.4.1 Moved 重定向

客户端给一个Redis实例发送数据读写操作时,如果计算出来的槽不是在该节点上,这时候它会返回MOVED重定向错误,MOVED重定向错误中,会将哈希槽所在的新实例的IP和port端口带回去。这就是Redis Cluster的MOVED重定向机制。流程图如下:

3.4.2 ASK 重定向

Ask重定向一般发生于集群伸缩的时候。集群伸缩会导致槽迁移,当我们去源节点访问时,此时数据已经可能已经迁移到了目标节点,使用Ask重定向可以解决此种情况。

3.5 Cluster集群节点的通讯协议:Gossip

一个Redis集群由多个节点组成,各个节点之间是怎么通信的呢?通过Gossip协议!Gossip是一种谣言传播协议,每个节点周期性地从节点列表中选择 k 个节点,将本节点存储的信息传播出去,直到所有节点信息一致,即算法收敛了。

Gossip协议基本思想:一个节点想要分享一些信息给网络中的其他的一些节点。于是,它周期性的随机选择一些节点,并把信息传递给这些节点。这些收到信息的节点接下来会做同样的事情,即把这些信息传递给其他一些随机选择的节点。一般而言,信息会周期性的传递给N个目标节点,而不只是一个。这个N被称为fanout。

Redis Cluster集群通过Gossip协议进行通信,节点之前不断交换信息,交换的信息内容包括节点出现故障、新节点加入、主从节点变更信息、slot信息等等。gossip协议包含多种消息类型,包括ping,pong,meet,fail,等等

  • meet消息:通知新节点加入。消息发送者通知接收者加入到当前集群,meet消息通信正常完成后,接收节点会加入到集群中并进行周期性的ping、pong消息交换。

  • ping消息:节点每秒会向集群中其他节点发送 ping 消息,消息中带有自己已知的两个节点的地址、槽、状态信息、最后一次通信时间等

  • pong消息:当接收到ping、meet消息时,作为响应消息回复给发送方确认消息正常通信。消息中同样带有自己已知的两个节点信息。

  • fail消息:当节点判定集群内另一个节点下线时,会向集群内广播一个fail消息,其他节点接收到fail消息之后把对应节点更新为下线状态。

特别的,每个节点是通过集群总线(cluster bus) 与其他的节点进行通信的。通讯时,使用特殊的端口号,即对外服务端口号加10000。例如如果某个node的端口号是6379,那么它与其它nodes通信的端口号是 16379。nodes 之间的通信采用特殊的二进制协议。

3.6?为什么Redis Cluster的Hash Slot 是16384?

对于客户端请求过来的键值key,哈希槽=?CRC16(key) % 16384,CRC16算法产生的哈希值是16bit的,按道理该算法是可以产生2^16=65536个值,为什么不用65536,用的是16384(2^14)呢?

大家可以看下作者的原始回答:

Redis 每个实例节点上都保存对应有哪些slots,它是一个unsigned char slots[REDIS_CLUSTER_SLOTS/8]?类型

  • 在redis节点发送心跳包时需要把所有的槽放到这个心跳包里,如果slots数量是?65536?,占空间= ?65536 / 8(一个字节8bit) / 1024(1024个字节1kB) =8kB?,如果使用slots数量是?16384?,所占空间 =?16384 / 8(每个字节8bit) / 1024(1024个字节1kB) = 2kB?,可见16384个slots比 65536省 6kB内存左右,假如一个集群有100个节点,那每个实例里就省了600kB啦

  • 一般情况下Redis cluster集群主节点数量基本不可能超过1000个,超过1000会导致网络拥堵。对于节点数在1000以内的Redis cluster集群,16384个槽位其实够用了。

既然为了节省内存网络开销,为什么 slots不选择用8192(即16384/2)?呢?

假如 slots 设置成 8192, 200个实例的节点情况下,理论值是 每40个不同key请求,命中就会失效一次,假如节点数增加到400,那就是20个请求。并且1kb 并不会比 2k 省太多,性价比不是特别高,所以可能 选16384会更为通用一点


参考链接:

Redis主从、哨兵、 Cluster集群一锅端!

  大数据 最新文章
实现Kafka至少消费一次
亚马逊云科技:还在苦于ETL?Zero ETL的时代
初探MapReduce
【SpringBoot框架篇】32.基于注解+redis实现
Elasticsearch:如何减少 Elasticsearch 集
Go redis操作
Redis面试题
专题五 Redis高并发场景
基于GBase8s和Calcite的多数据源查询
Redis——底层数据结构原理
上一篇文章      下一篇文章      查看所有文章
加:2022-05-08 08:10:56  更:2022-05-08 08:11:52 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/16 9:09:46-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码