IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 大数据 -> elasticsearch 8.0 python使用API操作 -> 正文阅读

[大数据]elasticsearch 8.0 python使用API操作

1. 初始化es

from elasticsearch import Elasticsearch

es = Elasticsearch([{'host': '192.168.171.81', 'port': 9200}], timeout=3600)

2. 创建index

request_body={
	"mappings": {
        "properties": {
            "name": {"type": "keyword"},
            "age": {"type": "keyword"},
            "sex": {"type": "keyword"},
            "address": {"type": "keyword"},
            "sect": {"type": "keyword"},
            "skill": {"type": "keyword"},
            "power": {"type": "keyword"},
            "create_time": {"type": "keyword"},
            "modify_time": {"type": "keyword"}
        }
    }
}
response = es.indices.create(index='example_index', body=request_body)

返回结果response:

{
    "acknowledged": true,
    "index": "example_index",
    "shards_acknowledged": true
}

3. 添加数据

3.1 普通方式添加数据

data = {
        "name": "赵敏",
        "age": "16",
        "sex": "f",
        "address": "大都",
        "sect": "朝廷",
        "skill": "无",
        "power": "40",
        "create_time": "2022-4-18 14:34:47",
        "modify_time": "2022-4-18 14:34:52"
    }
response = es.index(index="example_index", body=data)

response返回结果如下:

{
    "_id": "k5NiO4ABj1R4dwhU4Go9",
    "_index": "example_index",
    "_primary_term": 1,
    "_seq_no": 2,
    "_shards": {
        "failed": 0,
        "successful": 1,
        "total": 2
    },
    "_version": 1,
    "result": "created"
}

3.2 使用bulk批量添加数据

借助elasticsearch helpers工具进行添加,需要引入:from elasticsearch import helpers

bulk_data = [{'_index': 'example_index', '_source': {
        "name": "张无忌",
        "age": "19",
        "sex": "m",
        "address": "光明顶",
        "sect": "明教",
        "skill": "九阳神功",
        "power": "99",
        "create_time": "2022-4-18 11:25:24",
        "modify_time": "2022-4-18 11:25:46"
    }}, {'_index': 'example_index', '_source': {
        "name": "周芷若",
        "age": "17",
        "sex": "f",
        "address": "峨眉山",
        "sect": "峨眉派",
        "skill": "九阴真经",
        "power": "88",
        "create_time": "2022-4-18 11:27:40",
        "modify_time": "2022-4-18 11:27:48"
    }}]
    # response = es.bulk(index='example_index', body=bulk_data)
    response = helpers.bulk(es, bulk_data)

response返回结果如下:

[
    2,
    []
]

表明正常添加了两条数据。
此外,也可以通过下面这种bulk的方式来进行添加:

    body = [
        {"index": {"_index": "example_index"}},
        {"name": "张三丰", "age": "90", "sex": "m", "address": "武当山", "sect": "武当派", "skill": "太极", "power": "95", "create_time": "2022-4-18 14:59:34", "modify_time": "2022-4-18 14:59:44"},
        {"index": {"_index": "example_index"}},
        {"name": "宋远桥", "age": "40", "sex": "m", "address": "武当山", "sect": "武当派", "skill": "太极", "power": "60", "create_time": "2022-4-18 15:02:08", "modify_time": "2022-4-18 15:02:15"},
    ]
    response = es.bulk(body)

这种方式的response的返回结果如下:

{
    "errors": false,
    "items": [
        {
            "index": {
                "_id": "lJN9O4ABj1R4dwhUgGrI",
                "_index": "example_index",
                "_primary_term": 1,
                "_seq_no": 3,
                "_shards": {
                    "failed": 0,
                    "successful": 1,
                    "total": 2
                },
                "_version": 1,
                "result": "created",
                "status": 201
            }
        },
        {
            "index": {
                "_id": "lZN9O4ABj1R4dwhUgGrI",
                "_index": "example_index",
                "_primary_term": 1,
                "_seq_no": 4,
                "_shards": {
                    "failed": 0,
                    "successful": 1,
                    "total": 2
                },
                "_version": 1,
                "result": "created",
                "status": 201
            }
        }
    ],
    "took": 14
}

可以看出他将每条数据的插入信息都返回了。

4. 删除数据

4.1 普通方式删除数据

    response = es.delete(index="example_index", id="k5NiO4ABj1R4dwhU4Go9")

返回response如下:

{
    "_id": "k5NiO4ABj1R4dwhU4Go9",
    "_index": "example_index",
    "_primary_term": 1,
    "_seq_no": 9,
    "_shards": {
        "failed": 0,
        "successful": 1,
        "total": 2
    },
    "_version": 2,
    "result": "deleted"
}

4.2 使用bulk批量删除数据

    body = [
        {"delete": {"_index": "example_index", "_id": "lJN9O4ABj1R4dwhUgGrI"}},
        {"delete": {"_index": "example_index", "_id": "lZN9O4ABj1R4dwhUgGrI"}},
    ]
    response = es.bulk(body)
    return jsonify(response)

返回结果response如下:

{
    "errors": false,
    "items": [
        {
            "delete": {
                "_id": "lJN9O4ABj1R4dwhUgGrI",
                "_index": "example_index",
                "_primary_term": 1,
                "_seq_no": 5,
                "_shards": {
                    "failed": 0,
                    "successful": 1,
                    "total": 2
                },
                "_version": 2,
                "result": "deleted",
                "status": 200
            }
        },
        {
            "delete": {
                "_id": "lZN9O4ABj1R4dwhUgGrI",
                "_index": "example_index",
                "_primary_term": 1,
                "_seq_no": 6,
                "_shards": {
                    "failed": 0,
                    "successful": 1,
                    "total": 2
                },
                "_version": 2,
                "result": "deleted",
                "status": 200
            }
        }
    ],
    "took": 16
}

4.3 按条件删除数据

    query = {
        "query": {
            "bool": {
                "must": [
                    {
                        "term": {
                            "name": {
                                "value": "赵敏"
                            }
                        }
                    }
                ]
            }
        }
    }
    response = es.delete_by_query(index='example_index', body=query)

返回结果response如下:

{
    "batches": 1,
    "deleted": 1,
    "failures": [],
    "noops": 0,
    "requests_per_second": -1.0,
    "retries": {
        "bulk": 0,
        "search": 0
    },
    "throttled_millis": 0,
    "throttled_until_millis": 0,
    "timed_out": false,
    "took": 34,
    "total": 1,
    "version_conflicts": 0
}

5. 更新数据

5.1 普通方式更新

原始文档数据:

{
  "name" : "赵敏",
  "age" : "16",
  "sex" : "f",
  "address" : "大都",
  "sect" : "朝廷",
  "skill" : "无",
  "power" : "40",
  "create_time" : "2022-4-18 14:34:47",
  "modify_time" : "2022-4-18 14:34:52"
}

需求:我们需要将age改为17,代码如下:

    data = {
        "doc": {"age": "17"}
    }
    response = es.update(index='example_index', id='mZOyO4ABj1R4dwhUb2r6', body=data)

需要注意的是更新的data中需要包含docdoc里面才是更新的数据。
返回response信息如下:

{
    "_id": "mZOyO4ABj1R4dwhUb2r6",
    "_index": "example_index",
    "_primary_term": 1,
    "_seq_no": 13,
    "_shards": {
        "failed": 0,
        "successful": 1,
        "total": 2
    },
    "_version": 2,
    "result": "updated"
}

5.2 使用bulk批量修改

    body = [
        {"update": {"_id": "mZOyO4ABj1R4dwhUb2r6", "_index": "example_index"}},
        {"doc": {"age": "18"}},
        {"update": {"_id": "kZMpO4ABj1R4dwhUfWpA", "_index": "example_index"}},
        {"doc": {"age": "20", "skill": "九阳神功, 乾坤大挪移", "父亲": "张翠山"}}
    ]
    response = es.bulk(body)

返回response信息如下:

{
    "errors": false,
    "items": [
        {
            "update": {
                "_id": "mZOyO4ABj1R4dwhUb2r6",
                "_index": "example_index",
                "_primary_term": 1,
                "_seq_no": 14,
                "_shards": {
                    "failed": 0,
                    "successful": 1,
                    "total": 2
                },
                "_version": 3,
                "result": "updated",
                "status": 200
            }
        },
        {
            "update": {
                "_id": "kZMpO4ABj1R4dwhUfWpA",
                "_index": "example_index",
                "_primary_term": 1,
                "_seq_no": 15,
                "_shards": {
                    "failed": 0,
                    "successful": 1,
                    "total": 2
                },
                "_version": 2,
                "result": "updated",
                "status": 200
            }
        }
    ],
    "took": 171
}

6. 查询

6.1 等值查询

等值查询,即筛选出一个字段等于特定值的所有记录。
SQL:

select * from example_index where name = '张无忌';

python:

    query = {
        "query": {
            "bool": {
                "must": [
                    {
                        "term": {
                            "name": {
                                "value": "赵敏"
                            }
                        }
                    }
                ]
            }
        }
    }
    response = es.search(index='example_index', size=1, body=query)

返回response结果如下:

{
    "_shards": {
        "failed": 0,
        "skipped": 0,
        "successful": 1,
        "total": 1
    },
    "hits": {
        "hits": [
            {
                "_id": "mZOyO4ABj1R4dwhUb2r6",
                "_index": "example_index",
                "_score": 1.1631508,
                "_source": {
                    "address": "大都",
                    "age": "18",
                    "create_time": "2022-4-18 14:34:47",
                    "modify_time": "2022-4-18 14:34:52",
                    "name": "赵敏",
                    "power": "40",
                    "sect": "朝廷",
                    "sex": "f",
                    "skill": "无"
                }
            }
        ],
        "max_score": 1.1631508,
        "total": {
            "relation": "eq",
            "value": 1
        }
    },
    "timed_out": false,
    "took": 3
}

我们可以看到返回结果中包含_score,ES会根据结果匹配程度进行评分。打分是会耗费性能的,如果确认自己的查询不需要评分,就设置查询语句关闭评分。因此我们常常使用filter进行查询:

    query = {
        "query": {
            "bool": {
                "filter": [
                    {
                        "term": {
                            "name": "赵敏"
                        }
                    }
                ]
            }
        }
    }
    response = es.search(index='example_index', size=1, body=query)

通过filter查询的结果response如下:

{
    "_shards": {
        "failed": 0,
        "skipped": 0,
        "successful": 1,
        "total": 1
    },
    "hits": {
        "hits": [
            {
                "_id": "mZOyO4ABj1R4dwhUb2r6",
                "_index": "example_index",
                "_score": 0.0,
                "_source": {
                    "address": "大都",
                    "age": "18",
                    "create_time": "2022-4-18 14:34:47",
                    "modify_time": "2022-4-18 14:34:52",
                    "name": "赵敏",
                    "power": "40",
                    "sect": "朝廷",
                    "sex": "f",
                    "skill": "无"
                }
            }
        ],
        "max_score": 0.0,
        "total": {
            "relation": "eq",
            "value": 1
        }
    },
    "timed_out": false,
    "took": 3
}

可以看到返回结果中没有了计算的评分score,这种方式可以节省性能。

6.2 多值查询

多条件查询类似Mysql里的IN查询,例如:
SQL:

select * from persons where sect in('明教','武当派');

Python:

    query = {
        "query": {
            "bool": {
                "filter": [
                    {
                        "terms": {
                            "sect": [
                                "武当派",
                                "明教"
                            ]
                        }
                    }
                ]
            }
        }
    }
    response = es.search(index='example_index', size=100, body=query)

返回结果如下:

{
    "_shards": {
        "failed": 0,
        "skipped": 0,
        "successful": 1,
        "total": 1
    },
    "hits": {
        "hits": [
            {
                "_id": "lpOYO4ABj1R4dwhUv2qJ",
                "_index": "example_index",
                "_score": 0.0,
                "_source": {
                    "address": "武当山",
                    "age": "90",
                    "create_time": "2022-4-18 14:59:34",
                    "modify_time": "2022-4-18 14:59:44",
                    "name": "张三丰",
                    "power": "95",
                    "sect": "武当派",
                    "sex": "m",
                    "skill": "太极"
                }
            },
            {
                "_id": "l5OYO4ABj1R4dwhUv2qJ",
                "_index": "example_index",
                "_score": 0.0,
                "_source": {
                    "address": "武当山",
                    "age": "40",
                    "create_time": "2022-4-18 15:02:08",
                    "modify_time": "2022-4-18 15:02:15",
                    "name": "宋远桥",
                    "power": "60",
                    "sect": "武当派",
                    "sex": "m",
                    "skill": "太极"
                }
            },
            {
                "_id": "kZMpO4ABj1R4dwhUfWpA",
                "_index": "example_index",
                "_score": 0.0,
                "_source": {
                    "address": "光明顶",
                    "age": "20",
                    "create_time": "2022-4-18 11:25:24",
                    "modify_time": "2022-4-18 11:25:46",
                    "name": "张无忌",
                    "power": "99",
                    "sect": "明教",
                    "sex": "m",
                    "skill": "九阳神功, 乾坤大挪移",
                    "父亲": "张翠山"
                }
            }
        ],
        "max_score": 0.0,
        "total": {
            "relation": "eq",
            "value": 3
        }
    },
    "timed_out": false,
    "took": 3
}

使用filter进行查询,得到的结果中没有score,可以提升查询性能。

6.3 范围查询

范围查询,即查询某字段在特定区间的记录。
SQL:

select * from example_index where age between 10 and 30;

python

    query = {
        "query": {
            "range": {
                "age": {
                    "gte": 10,
                    "lte": 30
                }
            }
        }
    }
    response = es.search(index='example_index', size=100, body=query)

返回结果如下:

{
    "_shards": {
        "failed": 0,
        "skipped": 0,
        "successful": 1,
        "total": 1
    },
    "hits": {
        "hits": [
            {
                "_id": "kpMpO4ABj1R4dwhUfWpA",
                "_index": "example_index",
                "_score": 1.0,
                "_source": {
                    "address": "峨眉山",
                    "age": "17",
                    "create_time": "2022-4-18 11:27:40",
                    "modify_time": "2022-4-18 11:27:48",
                    "name": "周芷若",
                    "power": "88",
                    "sect": "峨眉派",
                    "sex": "f",
                    "skill": "九阴真经"
                }
            },
            {
                "_id": "mZOyO4ABj1R4dwhUb2r6",
                "_index": "example_index",
                "_score": 1.0,
                "_source": {
                    "address": "大都",
                    "age": "18",
                    "create_time": "2022-4-18 14:34:47",
                    "modify_time": "2022-4-18 14:34:52",
                    "name": "赵敏",
                    "power": "40",
                    "sect": "朝廷",
                    "sex": "f",
                    "skill": "无"
                }
            },
            {
                "_id": "kZMpO4ABj1R4dwhUfWpA",
                "_index": "example_index",
                "_score": 1.0,
                "_source": {
                    "address": "光明顶",
                    "age": "20",
                    "create_time": "2022-4-18 11:25:24",
                    "modify_time": "2022-4-18 11:25:46",
                    "name": "张无忌",
                    "power": "99",
                    "sect": "明教",
                    "sex": "m",
                    "skill": "九阳神功, 乾坤大挪移",
                    "父亲": "张翠山"
                }
            }
        ],
        "max_score": 1.0,
        "total": {
            "relation": "eq",
            "value": 3
        }
    },
    "timed_out": false,
    "took": 3
}

6.4 前缀查询

前缀查询类似于SQL中的模糊查询。
SQL:

select * from persons where sect like '武当%';

Python

    query = {
        "query": {
            "bool": {
                "filter": [
                    {
                        "prefix": {
                            "sect": "武当"
                        }
                    }
                ]
            }
        }
    }
    response = es.search(index='example_index', size=100, body=query)

返回结果信息如下:

{
    "_shards": {
        "failed": 0,
        "skipped": 0,
        "successful": 1,
        "total": 1
    },
    "hits": {
        "hits": [
            {
                "_id": "lpOYO4ABj1R4dwhUv2qJ",
                "_index": "example_index",
                "_score": 0.0,
                "_source": {
                    "address": "武当山",
                    "age": "90",
                    "create_time": "2022-4-18 14:59:34",
                    "modify_time": "2022-4-18 14:59:44",
                    "name": "张三丰",
                    "power": "95",
                    "sect": "武当派",
                    "sex": "m",
                    "skill": "太极"
                }
            },
            {
                "_id": "l5OYO4ABj1R4dwhUv2qJ",
                "_index": "example_index",
                "_score": 0.0,
                "_source": {
                    "address": "武当山",
                    "age": "40",
                    "create_time": "2022-4-18 15:02:08",
                    "modify_time": "2022-4-18 15:02:15",
                    "name": "宋远桥",
                    "power": "60",
                    "sect": "武当派",
                    "sex": "m",
                    "skill": "太极"
                }
            }
        ],
        "max_score": 0.0,
        "total": {
            "relation": "eq",
            "value": 2
        }
    },
    "timed_out": false,
    "took": 5
}

6.5 通配符查询-wildcard

通配符查询,与前缀查询类似,都属于模糊查询的范畴,但通配符显然功能更强。
SQL:

select * from persons where name like '张%忌';

Python

    query = {
        "query": {
            "bool": {
                "filter": [
                    {
                        "wildcard": {
                            "name": {
                                "value": "张*"
                            }
                        }
                    }
                ]
            }
        }
    }
    response = es.search(index='example_index', size=100, body=query)

返回结果如下:

{
    "_shards": {
        "failed": 0,
        "skipped": 0,
        "successful": 1,
        "total": 1
    },
    "hits": {
        "hits": [
            {
                "_id": "lpOYO4ABj1R4dwhUv2qJ",
                "_index": "example_index",
                "_score": 0.0,
                "_source": {
                    "address": "武当山",
                    "age": "90",
                    "create_time": "2022-4-18 14:59:34",
                    "modify_time": "2022-4-18 14:59:44",
                    "name": "张三丰",
                    "power": "95",
                    "sect": "武当派",
                    "sex": "m",
                    "skill": "太极"
                }
            },
            {
                "_id": "kZMpO4ABj1R4dwhUfWpA",
                "_index": "example_index",
                "_score": 0.0,
                "_source": {
                    "address": "光明顶",
                    "age": "20",
                    "create_time": "2022-4-18 11:25:24",
                    "modify_time": "2022-4-18 11:25:46",
                    "name": "张无忌",
                    "power": "99",
                    "sect": "明教",
                    "sex": "m",
                    "skill": "九阳神功, 乾坤大挪移",
                    "父亲": "张翠山"
                }
            }
        ],
        "max_score": 0.0,
        "total": {
            "relation": "eq",
            "value": 2
        }
    },
    "timed_out": false,
    "took": 6
}

7 复合查询

前面的例子都是单个条件查询,在实际应用中,我们很有可能会过滤多个值或字段。先看一个简单的例子:
SQL:

select * from persons where sex = '女' and sect = '明教';

这样的多条件等值查询,就要借用到组合过滤器了,其查询语句是:
Python

    query = {
        "query": {
            "bool": {
                "must": [
                    {
                        "term": {
                            "sex": {
                                "value": "m"
                            }
                        }
                    }, {
                        "term": {
                            "sect": {
                                "value": "武当派"
                            }
                        }
                    }
                ]
            }
        }
    }
    response = es.search(index='example_index', size=100, body=query)

这里也可以将must变为filter,这样可以不用计算score
返回结果如下:

{
    "_shards": {
        "failed": 0,
        "skipped": 0,
        "successful": 1,
        "total": 1
    },
    "hits": {
        "hits": [
            {
                "_id": "lpOYO4ABj1R4dwhUv2qJ",
                "_index": "example_index",
                "_score": 1.7385149,
                "_source": {
                    "address": "武当山",
                    "age": "90",
                    "create_time": "2022-4-18 14:59:34",
                    "modify_time": "2022-4-18 14:59:44",
                    "name": "张三丰",
                    "power": "95",
                    "sect": "武当派",
                    "sex": "m",
                    "skill": "太极"
                }
            },
            {
                "_id": "l5OYO4ABj1R4dwhUv2qJ",
                "_index": "example_index",
                "_score": 1.7385149,
                "_source": {
                    "address": "武当山",
                    "age": "40",
                    "create_time": "2022-4-18 15:02:08",
                    "modify_time": "2022-4-18 15:02:15",
                    "name": "宋远桥",
                    "power": "60",
                    "sect": "武当派",
                    "sex": "m",
                    "skill": "太极"
                }
            }
        ],
        "max_score": 1.7385149,
        "total": {
            "relation": "eq",
            "value": 2
        }
    },
    "timed_out": false,
    "took": 2
}

7.1 布尔查询

布尔过滤器(bool filter)属于复合过滤器(compound filter)的一种 ,可以接受多个其他过滤器作为参数,并将这些过滤器结合成各式各样的布尔(逻辑)组合。
在这里插入图片描述
bool 过滤器下可以有4种子条件,可以任选其中任意一个或多个。filter是比较特殊的,这里先不说。

{"bool":{"must":[],"should":[],"must_not":[],}}
  • must:所有的语句都必须匹配,与 ‘=’ 等价。
  • must_not:所有的语句都不能匹配,与 ‘!=’ 或 not in 等价。
  • should:至少有n个语句要匹配,n由参数控制。

精度控制:
所有must语句必须匹配,所有must_not语句都必须不匹配,但有多少should语句应该匹配呢?默认情况下,没有should语句是必须匹配的,只有一个例外:那就是当没有must语句的时候,至少有一个should语句必须匹配。

我们可以通过minimum_should_match参数控制需要匹配的should语句的数量,它既可以是一个绝对的数字,又可以是个百分比:

    query = {
        "query": {
            "bool": {
                "must": [
                    {
                        "term": {
                            "sex": {
                                "value": "f"
                            }
                        }
                    }
                ],
                "should": [
                    {
                        "term": {
                            "address": {
                                "value": "峨眉山"
                            }
                        }
                    },
                    {
                        "term": {
                            "address": {
                                "value": "光明顶"
                            }
                        }
                    }
                ],
                "minimum_should_match": "1"
            }
        }
    }

    response = es.search(index='example_index', size=100, body=query)

逻辑条件相当于A and (B or C)BC至少满足一个条件。
返回信息如下:

{
    "_shards": {
        "failed": 0,
        "skipped": 0,
        "successful": 1,
        "total": 1
    },
    "hits": {
        "hits": [
            {
                "_id": "kpMpO4ABj1R4dwhUfWpA",
                "_index": "example_index",
                "_score": 2.500655,
                "_source": {
                    "address": "峨眉山",
                    "age": "17",
                    "create_time": "2022-4-18 11:27:40",
                    "modify_time": "2022-4-18 11:27:48",
                    "name": "周芷若",
                    "power": "88",
                    "sect": "峨眉派",
                    "sex": "f",
                    "skill": "九阴真经"
                }
            }
        ],
        "max_score": 2.500655,
        "total": {
            "relation": "eq",
            "value": 1
        }
    },
    "timed_out": false,
    "took": 4
}

8. filter查询

在ES中,提供了query contextfilter context 两种搜索:

  • query context:会对搜索结果进行相关性评分,可以理解为“文档与查询有多相关?”,分数越高,相关程度越高。
  • filter context:不需要相关性算分,能够利用缓存来获得更好的性能。可以理解为“文档是否与查询条件匹配?”。不会计算分数,且往往会缓存来提升性能。

filter context会作用于以下场景:

  • 在 bool query 下的 filter 参数与 must_not 参数
  • constant_score 查询下的 filter 参数
  • filter 聚合

query context会作用于querybool中的mustshould

8.1 单独使用filter

{
    "query":
    {
        "bool":
        {
            "filter":
            [
                {
                    "term":
                    {
                        "sex":
                        {
                            "value": "m",
                        }
                    }
                }
            ]
        }
    }
}

单独使用时,filter与must基本一样,不同的是filter不计算评分,效率更高。

8.2 和must、must_not同级,相当于子查询

SQL:

select * from (select * from persons where sect = '明教')) a where sex = 'm';

python:

    query = {
        "query": {
            "bool": {
                "must": [
                    {
                        "term": {
                            "sect": {
                                "value": "明教"
                            }
                        }
                    }
                ],
                "filter": [
                    {
                        "term": {
                            "sex": "m"
                        }
                    }
                ]
            }
        }
    }
    response = es.search(index='example_index', size=100, body=query)

返回结果如下:

{
    "_shards": {
        "failed": 0,
        "skipped": 0,
        "successful": 1,
        "total": 1
    },
    "hits": {
        "hits": [
            {
                "_id": "kZMpO4ABj1R4dwhUfWpA",
                "_index": "example_index",
                "_score": 1.1631508,
                "_source": {
                    "address": "光明顶",
                    "age": "20",
                    "create_time": "2022-4-18 11:25:24",
                    "modify_time": "2022-4-18 11:25:46",
                    "name": "张无忌",
                    "power": "99",
                    "sect": "明教",
                    "sex": "m",
                    "skill": "九阳神功, 乾坤大挪移",
                    "父亲": "张翠山"
                }
            }
        ],
        "max_score": 1.1631508,
        "total": {
            "relation": "eq",
            "value": 1
        }
    },
    "timed_out": false,
    "took": 2
}

9. 聚合查询

9.1 最值、平均值、求和

查询最大年龄、最小年龄、平均年龄。
SQL:

select max(age) from persons;

python:

query = {
 "aggregations": {
  "max_age": {
   "max": {
    "field": "age"
   }
  }
 }
}
 response = es.search(index='example_index', size=0, body=query)

9.2 去重查询

查询一共有多少个门派。
SQL:

select count(distinct sect) from example_index;

python

    query = {
        "aggregations": {
            "sect_count": {
                "cardinality": {
                    "field": "sect"
                }
            }
        }
    }
    response = es.search(index='example_index', size=0, body=query)

返回结果如下:

{
    "_shards": {
        "failed": 0,
        "skipped": 0,
        "successful": 1,
        "total": 1
    },
    "aggregations": {
        "sect_count": {
            "value": 4
        }
    },
    "hits": {
        "hits": [],
        "max_score": null,
        "total": {
            "relation": "eq",
            "value": 5
        }
    },
    "timed_out": false,
    "took": 2
}

9.3 单条件分组

查询每个门派的人数
SQL:

select sect,count(id) from example_index group by sect;

python

    query = {
        "size": 0,
        "aggregations": {
            "sect_count": {
                "terms": {
                    "field": "sect",
                    "size": 10,
                    "min_doc_count": 1,
                    "shard_min_doc_count": 0,
                    "show_term_doc_count_error": 'false',
                    "order": [
                        {
                            "_count": "desc"
                        },
                        {
                            "_key": "asc"
                        }
                    ]
                }
            }
        }
    }
    response = es.search(index='example_index', size=0, body=query)

返回结果:

{
    "_shards": {
        "failed": 0,
        "skipped": 0,
        "successful": 1,
        "total": 1
    },
    "aggregations": {
        "sect_count": {
            "buckets": [
                {
                    "doc_count": 2,
                    "key": "武当派"
                },
                {
                    "doc_count": 1,
                    "key": "峨眉派"
                },
                {
                    "doc_count": 1,
                    "key": "明教"
                },
                {
                    "doc_count": 1,
                    "key": "朝廷"
                }
            ],
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0
        }
    },
    "hits": {
        "hits": [],
        "max_score": null,
        "total": {
            "relation": "eq",
            "value": 5
        }
    },
    "timed_out": false,
    "took": 2
}

9.4 多条件分组

查询每个门派各有多少个男性和女性。
SQL:

select sect,sex,count(id) from example_index group by sect,sex;

python

query={
 "aggregations": {
  "sect_count": {
   "terms": {
    "field": "sect",
    "size": 10
   },
   "aggregations": {
    "sex_count": {
     "terms": {
      "field": "sex",
      "size": 10
     }
    }
   }
  }
 }
}

返回结果:

{
  "took" : 6,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 5,
      "relation" : "eq"
    },
    "max_score" : 1.0,
    "hits" : [
    ]
  },
  "aggregations" : {
    "sect_count" : {
      "doc_count_error_upper_bound" : 0,
      "sum_other_doc_count" : 0,
      "buckets" : [
        {
          "key" : "武当派",
          "doc_count" : 2,
          "sex_count" : {
            "doc_count_error_upper_bound" : 0,
            "sum_other_doc_count" : 0,
            "buckets" : [
              {
                "key" : "m",
                "doc_count" : 2
              }
            ]
          }
        },
        {
          "key" : "峨眉派",
          "doc_count" : 1,
          "sex_count" : {
            "doc_count_error_upper_bound" : 0,
            "sum_other_doc_count" : 0,
            "buckets" : [
              {
                "key" : "f",
                "doc_count" : 1
              }
            ]
          }
        },
        {
          "key" : "明教",
          "doc_count" : 1,
          "sex_count" : {
            "doc_count_error_upper_bound" : 0,
            "sum_other_doc_count" : 0,
            "buckets" : [
              {
                "key" : "m",
                "doc_count" : 1
              }
            ]
          }
        },
        {
          "key" : "朝廷",
          "doc_count" : 1,
          "sex_count" : {
            "doc_count_error_upper_bound" : 0,
            "sum_other_doc_count" : 0,
            "buckets" : [
              {
                "key" : "f",
                "doc_count" : 1
              }
            ]
          }
        }
      ]
    }
  }
}

9.5 过滤聚合

前面所有聚合的例子请求都省略了 query ,整个请求只不过是一个聚合。这意味着我们对全部数据进行了聚合,但现实应用中,我们常常对特定范围的数据进行聚合,例如下例:

查询明教中的最大年龄。这涉及到聚合与条件查询一起使用。

SQL:

select max(age) from example_index  where sect = '明教';

python:

query = {
 "query": {
  "term": {
   "sect.keyword": {
    "value": "明教",
    "boost": 1.0
   }
  }
 },
 "aggregations": {
  "max_age": {
   "max": {
    "field": "age"
   }
  }
 }
}

另外还有一些更复杂的查询例子。

案例:查询0-20,21-40,41-60,61以上的各有多少人。

SQL:

select 
 sum(case when age<=20 then 1 else 0 end) ageGroup1,
 sum(case when age >20 and age <=40 then 1 else 0 end) ageGroup2,
 sum(case when age >40 and age <=60 then 1 else 0 end) ageGroup3,
 sum(case when age >60 and age <=200 then 1 else 0 end) ageGroup4
from example_index

python:

{
 "size": 0,
 "aggregations": {
  "age_avg": {
   "range": {
    "field": "age",
    "ranges": [
     {
      "from": 0.0,
      "to": 20.0
     },
     {
      "from": 21.0,
      "to": 40.0
     },
     {
      "from": 41.0,
      "to": 60.0
     },
     {
      "from": 61.0,
      "to": 200.0
     }
    ],
    "keyed": false
   }
  }
 }
}
  大数据 最新文章
实现Kafka至少消费一次
亚马逊云科技:还在苦于ETL?Zero ETL的时代
初探MapReduce
【SpringBoot框架篇】32.基于注解+redis实现
Elasticsearch:如何减少 Elasticsearch 集
Go redis操作
Redis面试题
专题五 Redis高并发场景
基于GBase8s和Calcite的多数据源查询
Redis——底层数据结构原理
上一篇文章      下一篇文章      查看所有文章
加:2022-05-08 08:10:56  更:2022-05-08 08:12:09 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/16 9:03:52-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码