| |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
-> 大数据 -> 什么人适合学习大数据开发?学大数据难吗? -> 正文阅读 |
|
[大数据]什么人适合学习大数据开发?学大数据难吗? |
什么人适合学习大数据开发?学大数据难吗?有不少应届大学毕业生和0基础人群选择学大数据,但是要选择零基础的大数据培训班,从Java基础开始学习,由浅入深掌握离线数据分析、实时数据分析和内存数据计算等重要内容。 应届大学生缺乏工作经验和技能,对未来没有明确的规划,对就业前景的了解也不清晰,通过学习新技能入行大数据,能够让应届大学生具备更好的上升空间,而且,大数据的未来发展前景也非常不错,应届大学生入行大数据将是一个非常好的选择。当然,应届生的理解能力强,接受新知识的速度快,也让他们能够实现更快的转型。 学习大数据前应该做哪些准备?学习大数据要做的准备:做好学习的切入点;为自己构建出一个有效的学习和交流渠道;要有一定的场景支撑。当前大数据的技术体系结构已经趋于成熟,且大数据领域对于人才的需求比较多元化,所以不同知识结构的初学者,都能够找到自己的学习切入点。 从当前大的人才需求趋势来看,大数据开发、大数据分析和大数据运维这三大类人才的需求潜力都是比较大的。对于数学基础比较扎实的初学者,建议按照大数据分析路线来制定学习计划,而对于程序设计比较感兴趣的初学者,可按照大数据开发路线来制定学习计划;对于数学基础薄弱且不喜欢编程的初学者来说,按照大数据运维路线来制定学习计划。 在学习的初期都可以从以下三个方面开始学习: 1、Linux操作系统 学习大数据首先要具有一定的操作系统知识,由于当前的大数据开源平台往往都是基于Linux操作系统搭建的,所以应该重视Linux操作系统的学习。学习Linux操作系统的使用并不复杂,要重视Linux操作系统的资源管理方式。 2、编程语言 未来不论是从事大数据开发岗位,还是大数据分析岗位,甚至是大数据运维岗位,都需要掌握一定的编程知识。目前Java、Python、Scala、R、Go等编程语言的应用还是比较普遍的,初学者可以从Java或者是Python开始学起。 3、大数据平台 学习大数据平台是学习大数据技术的重要内容,大数据的诸多应用都是基于大数据平台展开的,学习大数据平台可以从开源大数据平台开始,比如Hadoop、Spark就是不错的选择 4、核心技术 随着国家战略支持和大数据技术的快速发展,大数据的应用场景在不断的深入,产生的影响也在不断的加大。未来几十年将由大数据驱动,大数据在促进各个领域发展的同时,也将需要更多的相关性人才。0基础学习大数据的难度是有的,但并不代表你无法实现快速的转型,选择一个合适的学习路线图学习也是可以的~ 第一阶段:大数据开发入门1、MySQL数据库及SQL语法 MySQL可以处理拥有上千万条记录的大型数据库,使用标准的SQL数据语言形式,MySQL可以安装在不同的操作系统,并且提供多种编程语言的操作接口,这些编程语言包括C、C++、Python、Java、Ruby等等。支持多种存储引擎。 2、Kettle与BI工具 Kettle作为一个端对端的数据集成平台,其部分特色功能包括:无代码拖拽式构建数据管道、多数据源对接、数据管道可视化、模板化开发数据管道、可视化计划任务、深度Hadoop支持、数据任务下压Spark集群、数据挖掘与机器学习支持。 3、Python与数据库交互 实际的生产任务中,数据几乎全部存在与数据库中,因此,与数据库的交互成为一件难以避免的事情。想要在Python代码中和mysql数据库进行交互,需要借助一个第三方的模块“pymysql” 第二阶段:大数据核心基础1、Linux Linux 作为操作系统,本身是为了管理内存,调度进程,处理网络协议栈等等。而大数据的发展是基于开源软件的平台,大数据的分布式集群( Hadoop,Spark )都是搭建在多台 Linux 系统上,对集群的执行命令都是在 Linux 终端窗口输入的。据Linux基金会的研究,86%的企业已经使用Linux操作系统进行大数据平台的构建。Linux占据优势。 2、Hadoop基础 2022最新大数据Hadoop入门教程,最适合零基础自学的大数据 Hadoop是一个能够对大量数据进行分布式处理的软件框架。 Hadoop 以一种可靠、高效、可伸缩的方式进行数据处理。它很擅长存储大量的半结构化的数据集。也非常擅长分布式计算——快速地跨多台机器处理大型数据集合。Hadoop的框架最核心的设计就是:HDFS和MapReduce.HDFS为海量的数据提供了存储,则MapReduce为海量的数据提供了计算。 MapReduce和Hadoop是相互独立的,实际上又能相互配合工作得很好。MapReduce是处理大量半结构化数据集合的编程模型。 3、大数据开发Hive基础 hive是基于Hadoop的一个数据仓库工具,用来进行数据提取、转化、加载,这是一种可以存储、查询和分析存储在Hadoop中的大规模数据的机制。 hive数据仓库工具能将结构化的数据文件映射为一张数据库表,并提供SQL查询功能,能将SQL语句转变成MapReduce任务来执行。Hive的优点是学习成本低,可以通过类似SQL语句实现快速MapReduce统计,使MapReduce变得更加简单,而不必开发专门的MapReduce应用程序。Hive十分适合对数据仓库进行统计分析。 第三阶段:千亿级数仓技术企业级在线教育项目实战(Hive数仓项目完整流程) 大数据项目实战教程_大数据企业级离线数据仓库,在线教育项目实战(Hive数仓项目完整流程) 以真实项目为驱动,学习离线数仓技术。建立集团数据仓库,统一集团数据中心,把分散的业务数据集中存储和处理 ;从需求调研、设计、版本控制、研发、测试到落地上线,涵盖了项目的完整工序 ;挖掘分析海量用户行为数据,定制多维数据集合,形成数据集市,供各个场景主题使用。 第四阶段:PB内存计算1、Python编程基础+进阶 全套Python教程_Python基础入门视频教程,零基础小白自学Python必备教程 Python高级语法进阶教程_python多任务及网络编程,从零搭建网站全套教程 Python是基于ABC语言的发展来的,Python语法和动态类型,以及解释型语言的本质,使它成为多数平台上写脚本和快速开发应用的编程语言, 随着版本的不断更新和语言新功能的添加,逐渐被用于独立的、大型项目的开发。 Python 语言的语法非常简洁明了,即便是非软件专业的初学者,也很容易上手,和其它编程语言相比,实现同一个功能,Python 语言的实现代码往往是最短的。 2、Spark技术栈 Spark全套视频教程,大数据spark3.2从基础到精通,全网首套基于Python语言的spark教程 Spark是大数据体系的明星产品,是一款高性能的分布式内存迭代计算框架,可以处理海量规模的数据。本课程基于Python语言学习Spark3.2开发,课程的讲解注重理论联系实际,高效快捷,深入浅出,让初学者也能快速掌握。让有经验的工程师也能有所收获。 3、大数据Flink技术栈 Flink核心是一个流式的数据流执行引擎,其针对数据流的分布式计算提供了数据分布、数据通信以及容错机制等功能。基于流执行引擎,Flink提供了诸多更高抽象层的API以便用户编写分布式任务。Flink也可以方便地和Hadoop生态圈中其他项目集成,例如Flink可以读取存储在HDFS或HBase中的静态数据,以Kafka作为流式的数据源,直接重用MapReduce或Storm代码,或是通过YARN申请集群资源等。 4.Spark离线数仓工业项目实战 全网首次披露大数据Spark离线数仓工业项目实战,Hive+Spark构建企业级大数据平台 通过大数据技术架构,解决工业物联网制造行业的数据存储和分析、可视化、个性化推荐问题。一站制造项目主要基于Hive数仓分层来存储各个业务指标数据,基于sparkSQL做数据分析。核心业务涉及运营商、呼叫中心、工单、油站、仓储物料。 |
|
|
上一篇文章 下一篇文章 查看所有文章 |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 | -2025/1/16 5:32:47- |
|
网站联系: qq:121756557 email:121756557@qq.com IT数码 |