Redis缓存三大问题以及解决方案?
redis(五)-缓存三大问题及解决方案_haoxin963的博客-CSDN博客_redis三大问题
看完这篇Redis缓存三大问题,保你能和面试官互扯。 - 简书 (jianshu.com)
1. 缓存穿透:
查询数据不存在
? 业务系统要查询的数据根本就存在!当业务系统发起查询时,按照上述流程,首先会前往缓存中查询,由于缓存中不存在,然后再前往数据库中查询。由于该数据压根就不存在,因此数据库也返回空。这就是缓存穿透。
综上所述:业务系统访问压根就不存在的数据,就称为缓存穿透。
缓存穿透的解决方案:
1)缓存空值——之所以发生缓存穿透,是因为缓存中没有存储这些空数据的key,导致这些请求全都打到数据库上。那么,我们可以稍微修改一下业务系统的代码,将数据库查询结果为空的key也存储在缓存中。当后续又出现该key的查询请求时,缓存直接返回null,而无需查询数据库。
2)key 值校验,如布隆筛选器BloomFilter——当业务系统有查询请求的时候,首先去BloomFilter中查询该key是否存在。若不存在,则说明数据库中也不存在该数据,因此缓存都不要查了,直接返回null。若存在,则继续执行后续的流程,先前往缓存中查询,缓存中没有的话再前往数据库中的查询。这种方法适用于数据命中不高,数据相对固定实时性低(通常是数据集较大)的应用场景,代码维护较为复杂,但是缓存空间占用少。
2. 缓存击穿:
热点数据集中失效——是指一个key 非常热点,在不停的扛着大并发,大并发集中对这一个点进行访问,当这个key在失效的瞬间,持续的大并发就穿破缓存,直接请求数据库,瞬间对数据库的访问压力增大。
如果某一个热点数据失效,那么当再次有该数据的查询请求[req-1]时就会前往数据库查询。但是,从请求发往数据库,到该数据更新到缓存中的这段时间中,由于缓存中仍然没有该数据,因此这段时间内到达的查询请求都会落到数据库上,这将会对数据库造成巨大的压力。此外,当这些请求查询完成后,都会重复更新缓存。
缓存击穿这里强调的是并发,造成缓存击穿的原因有以下两个:
- 该数据没有人查询过 ,第一次就大并发的访问。(冷门数据)
- 添加到了缓存,reids有设置数据失效的时间 ,这条数据刚好失效,大并发访问(热点数据)
缓存击穿的解决方案:
1)互斥锁:
? 此方法只允许一个线程重建缓存,其他线程等待重建缓存的线程执行完,重新从缓存获取数据即可
对于多个key集中失效的问题,设置不同的过期时间。
2)热点数据永不过期
? 从缓存层面来看,确实没有设置过期时间,所以不会出现热点 key 过期后产生的问题,也就是“物理”不过期。 ? 从功能层面来看,为每个 value 设置一个逻辑过期时间,当发现超过逻辑过期时间后,会使用单独的线程去构建缓存。 从实战看,此方法有效杜绝了热点 key 产生的问题,但唯一不足的就是重构缓存期间,会出现数据不一致的情况,这取决于应用方是否容忍这种不一致。
3)熔断降级
3. 缓存雪崩:
是指在某一个时间段,缓存集中过期失效或者Redis宕机。此刻无数的请求直接绕开缓存,直接请求数据库。——缓存其实扮演了一个保护数据库的角色。它帮数据库抵挡大量的查询请求,从而避免脆弱的数据库受到伤害。如果缓存因某种原因发生了宕机,那么原本被缓存抵挡的海量查询请求就会像疯狗一样涌向数据库。此时数据库如果抵挡不了这巨大的压力,它就会崩溃。这就是缓存雪崩。
缓存雪崩的解决方案:
- 搭建高可用的集群,防止单机的redis宕机。
- 设置不同的过期时间,防止同一时间内大量的key失效。
|