TDengine 是一款高性能、分布式、支持 SQL 的时序数据库,其核心代码,包括集群功能全部开源(开源协议,AGPL v3.0)。TDengine 能被广泛运用于物联网、工业互联网、车联网、IT 运维、金融等领域。除核心的时序数据库功能外,TDengine 还提供缓存、数据订阅、流式计算等大数据平台所需要的系列功能,最大程度减少研发和运维的复杂度。主要功能如下:
?
时序数据库全称为时间序列数据库。时间序列数据库指主要用于处理带时间标签(按照时间的顺序变化,即时间序列化)的数据,带时间标签的数据也称为时间序列数据。 时间序列数据主要由电力行业、化工行业、气象行业、地理信息等各类型实时监测、检查与分析设备所采集、产生的数据,这些工业数据的典型特点是:产生频率快(每一个监测点一秒钟内可产生多条数据)、严重依赖于采集时间(每一条数据均要求对应唯一的时间)、测点多信息量大(常规的实时监测系统均有成千上万的监测点,监测点每秒钟都产生数据,每天产生几十GB的数据量)。
高速数据写入,除 SQL 写入外,还支持 Schemaless 写入,支持 InfluxDB LINE 协议,OpenTSDB Telnet, OpenTSDB JSON 等协议写入; 第三方数据采集工具 Telegraf,Prometheus,StatsD,collectd,icinga2, Tcollector, EMQ, HiveMQ 等都可以进行配置后,不用任何代码,即可将数据写入; 支持各种查询,包括聚合查询、嵌套查询、降采样查询、插值等 支持用户自定义函数 支持缓存,将每张表的最后一条记录缓存起来,这样无需 Redis 支持连续查询(Continuous Query) 支持数据订阅,而且可以指定过滤条件 支持集群,可以通过多节点进行水平扩展,并通过多副本实现高可靠 提供命令行程序,便于管理集群,检查系统状态,做即席查询 提供多种数据的导入、导出 支持对TDengine 集群本身的监控 提供 C/C++, Java, Python, Go, Rust, Node.js 等多种编程语言的连接器 支持 REST 接口 支持与 Grafana 无缝集成 支持与 Google Data Studio 无缝集成
TDengine 有以下特点: 高性能:通过创新的存储引擎设计,无论是数据写入还是查询,TDengine 的性能比通用数据库快 10 倍以上,也远超其他时序数据库,而且存储空间也大为节省。 分布式:通过原生分布式的设计,TDengine 提供了水平扩展的能力,只需要增加节点就能获得更强的数据处理能力,同时通过多副本机制保证了系统的高可用。 支持 SQL:TDengine 采用 SQL 作为数据查询语言,减少学习和迁移成本,同时提供 SQL 扩展来处理时序数据特有的分析,而且支持方便灵活的 schemaless 数据写入。 All in One:将数据库、消息队列、缓存、流式计算等功能融合一起,应用无需再集成 Kafka/Redis/HBase/Spark 等软件,大幅降低应用开发和维护成本。 零管理:安装、集群几秒搞定,无任何依赖,不用分库分表,系统运行状态监测能与 Grafana 或其他运维工具无缝集成。 零学习成本:采用 SQL 查询语言,支持 C/C++、Python、Java、Go、Rust、Node.js、C#、Lua(社区贡献)、PHP(社区贡献) 等多种编程语言,与 MySQL 相似,零学习成本。 无缝集成:不用一行代码,即可与 Telegraf、Grafana、Prometheus、EMQX、HiveMQ、StatsD、collectd、icinga、TCollector、Matlab、R 等第三方工具无缝集成。 互动 Console: 通过命令行 console,不用编程,执行 SQL 语句就能做即席查询、各种数据库的操作、管理以及集群的维护.
|