IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 大数据 -> 第四篇:trace工具查看MySQL如何选择索引 -> 正文阅读

[大数据]第四篇:trace工具查看MySQL如何选择索引

一个有趣的案例

??我在本地建了两个表(表结构是一样的)user,user_copy,两个表都有一个联合索引idx_name_age_address。user表中共有10w条数据,user_copy中没有数据。
image.png

/*
Navicat MySQL Data Transfer

Source Server         : MySQL
Source Server Version : 50714
Source Host           : localhost:3306
Source Database       : db

Target Server Type    : MYSQL
Target Server Version : 50714
File Encoding         : 65001

Date: 2022-05-13 08:07:06
*/

SET FOREIGN_KEY_CHECKS=0;

-- ----------------------------
-- Table structure for user
-- ----------------------------
DROP TABLE IF EXISTS `user`;
CREATE TABLE `user` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `name` varchar(24) NOT NULL DEFAULT '' COMMENT '姓名',
  `age` int(11) NOT NULL DEFAULT '0' COMMENT '年龄',
  `address` varchar(20) NOT NULL DEFAULT '' COMMENT '地址',
  `create_time` datetime DEFAULT CURRENT_TIMESTAMP,
  PRIMARY KEY (`id`),
  KEY `idx_name_age_address` (`name`,`age`,`address`) USING BTREE
) ENGINE=InnoDB AUTO_INCREMENT=100003 DEFAULT CHARSET=utf8 COMMENT='用户表';

部分数据如下:
image.png

下面我们先看几个测试:

测试1:相同表结构,测试走索引情况及扫描行数(user表10w条数据,user_copy表0条数据)

image.pngimage.png
对比结论:上方两条SQL的区别是user表10w条数据,user_copy表没有数据。可以看出MySQL在范围查询时,如果第一个字段就用范围查找,会根据数据量大小来判断是否要走索引。第一个字段就范围查询,MySQL可能认为结果集很大就直接扫全表了。

测试2:强制走索引与不强制走索引,SQL执行时间

image.png
image.png
可以看到强制走索引可能查询的行数是5w多行,没有强制走索引的可能查询的行数是10w行,我们关闭查询缓存看看二者的执行时间:

‐‐ 关闭查询缓存
set global query_cache_size=0;
set global query_cache_type=0;
‐‐ 执行时间0.1s
SELECT * FROM user WHERE name > 'linguo';
‐‐ 执行时间0.4s
SELECT * FROM user force index(idx_name_age_address) WHERE name > 'linguo';

对比结论:虽然使用了强制走索引让联合索引第一个字段范围查找也走索引,扫描的行rows看上去也少了点,但是最终查找效率不一定比全表扫描高,因为回表效率不高

测试3: 数据量大小对in,or的影响

image.pngimage.png

对比结论:in和or在表数据量比较大的情况会走索引,在表记录不多的情况下会选择全表扫描

对比4:数据量,对比like ‘kk%’ 效果

image.png
image.png
对比结论:不论数据量多少,都会走索引,like ‘kk%’ 是范围查询,之所以索引生效是用到了索引下推。

?? 所谓索引下推是MySQL 5.6引入的,它可以在索引遍历过程中,对索引中包含的所有字段先做判断,过滤掉不符合条件的记录之后再回表,可以有效的减少回表次数.

trace工具

??trace工具是MySQL自带的功能,它可以清楚的看到每条SQL执行时,MySQL计算出执行的cost成本。默认是不打开的,因为极其耗费性能。
image.png
我们来看这name > ‘a’ 这条sql的MySQL是如何选择的,下方大家只看cost字段,这是数字越大代表MySQL执行的成本越高。 下方有两个cost:

  1. 全表扫描:rows10666,cost 20368
  2. 走联合索引idx_name_age_address:rows50033,cost60041
    虽然全表扫描可能扫描的行数比较多,但是mysql计算出来扫全表比较快,因此上图通过explain看到的结果是选择不走索引。当然这也不是决定的,比如当select的字段都是联合索引中的字段时,这条SQL就会走联合索引(即cost成本比全表低)
{
  "steps": [
    {
      "join_preparation": {
        "select#": 1,
        "steps": [
          {
            "expanded_query": "/* select#1 */ select `user`.`id` AS `id`,`user`.`name` AS `name`,`user`.`age` AS `age`,`user`.`address` AS `address`,`user`.`create_time` AS `create_time` from `user` where (`user`.`name` > 'a') order by `user`.`address`"
          }
        ] /* steps */
      } /* join_preparation */
    },
    {
      "join_optimization": {
        "select#": 1,
        "steps": [
          {
            "condition_processing": {
              "condition": "WHERE",
              "original_condition": "(`user`.`name` > 'a')",
              "steps": [
                {
                  "transformation": "equality_propagation",
                  "resulting_condition": "(`user`.`name` > 'a')"
                },
                {
                  "transformation": "constant_propagation",
                  "resulting_condition": "(`user`.`name` > 'a')"
                },
                {
                  "transformation": "trivial_condition_removal",
                  "resulting_condition": "(`user`.`name` > 'a')"
                }
              ] /* steps */
            } /* condition_processing */
          },
          {
            "substitute_generated_columns": {
            } /* substitute_generated_columns */
          },
          {
            "table_dependencies": [
              {
                "table": "`user`",
                "row_may_be_null": false,
                "map_bit": 0,
                "depends_on_map_bits": [
                ] /* depends_on_map_bits */
              }
            ] /* table_dependencies */
          },
          {
            "ref_optimizer_key_uses": [
            ] /* ref_optimizer_key_uses */
          },
          {
            "rows_estimation": [
              {
                "table": "`user`",
                "range_analysis": {
                  "table_scan": {
                    "rows": 100066,
                    "cost": 20368
                  } /* table_scan */,
                  "potential_range_indexes": [
                    {
                      "index": "PRIMARY",
                      "usable": false,
                      "cause": "not_applicable"
                    },
                    {
                      "index": "idx_name_age_address",
                      "usable": true,
                      "key_parts": [
                        "name",
                        "age",
                        "address",
                        "id"
                      ] /* key_parts */
                    }
                  ] /* potential_range_indexes */,
                  "setup_range_conditions": [
                  ] /* setup_range_conditions */,
                  "group_index_range": {
                    "chosen": false,
                    "cause": "not_group_by_or_distinct"
                  } /* group_index_range */,
                  "analyzing_range_alternatives": {
                    "range_scan_alternatives": [
                      {
                        "index": "idx_name_age_address",
                        "ranges": [
                          "a < name"
                        ] /* ranges */,
                        "index_dives_for_eq_ranges": true,
                        "rowid_ordered": false,
                        "using_mrr": false,
                        "index_only": false,
                        "rows": 50033,
                        "cost": 60041,
                        "chosen": false,
                        "cause": "cost"
                      }
                    ] /* range_scan_alternatives */,
                    "analyzing_roworder_intersect": {
                      "usable": false,
                      "cause": "too_few_roworder_scans"
                    } /* analyzing_roworder_intersect */
                  } /* analyzing_range_alternatives */
                } /* range_analysis */
              }
            ] /* rows_estimation */
          },
          {
            "considered_execution_plans": [
              {
                "plan_prefix": [
                ] /* plan_prefix */,
                "table": "`user`",
                "best_access_path": {
                  "considered_access_paths": [
                    {
                      "rows_to_scan": 100066,
                      "access_type": "scan",
                      "resulting_rows": 100066,
                      "cost": 20366,
                      "chosen": true,
                      "use_tmp_table": true
                    }
                  ] /* considered_access_paths */
                } /* best_access_path */,
                "condition_filtering_pct": 100,
                "rows_for_plan": 100066,
                "cost_for_plan": 20366,
                "sort_cost": 100066,
                "new_cost_for_plan": 120432,
                "chosen": true
              }
            ] /* considered_execution_plans */
          },
          {
            "attaching_conditions_to_tables": {
              "original_condition": "(`user`.`name` > 'a')",
              "attached_conditions_computation": [
              ] /* attached_conditions_computation */,
              "attached_conditions_summary": [
                {
                  "table": "`user`",
                  "attached": "(`user`.`name` > 'a')"
                }
              ] /* attached_conditions_summary */
            } /* attaching_conditions_to_tables */
          },
          {
            "clause_processing": {
              "clause": "ORDER BY",
              "original_clause": "`user`.`address`",
              "items": [
                {
                  "item": "`user`.`address`"
                }
              ] /* items */,
              "resulting_clause_is_simple": true,
              "resulting_clause": "`user`.`address`"
            } /* clause_processing */
          },
          {
            "reconsidering_access_paths_for_index_ordering": {
              "clause": "ORDER BY",
              "index_order_summary": {
                "table": "`user`",
                "index_provides_order": false,
                "order_direction": "undefined",
                "index": "unknown",
                "plan_changed": false
              } /* index_order_summary */
            } /* reconsidering_access_paths_for_index_ordering */
          },
          {
            "refine_plan": [
              {
                "table": "`user`"
              }
            ] /* refine_plan */
          }
        ] /* steps */
      } /* join_optimization */
    },
    {
      "join_execution": {
        "select#": 1,
        "steps": [
          {
            "filesort_information": [
              {
                "direction": "asc",
                "table": "`user`",
                "field": "address"
              }
            ] /* filesort_information */,
            "filesort_priority_queue_optimization": {
              "usable": false,
              "cause": "not applicable (no LIMIT)"
            } /* filesort_priority_queue_optimization */,
            "filesort_execution": [
            ] /* filesort_execution */,
            "filesort_summary": {
              "rows": 100002,
              "examined_rows": 100002,
              "number_of_tmp_files": 31,
              "sort_buffer_size": 261960,
              "sort_mode": "<sort_key, packed_additional_fields>"
            } /* filesort_summary */
          }
        ] /* steps */
      } /* join_execution */
    }
  ] /* steps */
}

image.png
这里我们再看下name>‘z’下,全表扫描与联合索引的成本。这里为什么使用’a’与’z’ ,原因B+树是有序的,英文字母是通过a~z这个顺序排序。这个时候尽管只是字母不一样,但是成本是截然不同的,name> ‘a’ 意外着扫全表,name> 'z’意味着查询的数据量很小。
看看两个cost:

  1. 全表扫描:rows10666,cost 20368
  2. 走联合索引idx_name_age_address:rows1,cost2.21
    全表扫描的cost成本还是不变,但是联合索引的成本大大降低。cost2.21,奈斯。所以对于索引的理解在于对B+树的理解,在于你心里能不能生成一颗B+树。
{
  "steps": [
    {
      "join_preparation": {
        "select#": 1,
        "steps": [
          {
            "expanded_query": "/* select#1 */ select `user`.`id` AS `id`,`user`.`name` AS `name`,`user`.`age` AS `age`,`user`.`address` AS `address`,`user`.`create_time` AS `create_time` from `user` where (`user`.`name` > 'z') order by `user`.`address`"
          }
        ] /* steps */
      } /* join_preparation */
    },
    {
      "join_optimization": {
        "select#": 1,
        "steps": [
          {
            "condition_processing": {
              "condition": "WHERE",
              "original_condition": "(`user`.`name` > 'z')",
              "steps": [
                {
                  "transformation": "equality_propagation",
                  "resulting_condition": "(`user`.`name` > 'z')"
                },
                {
                  "transformation": "constant_propagation",
                  "resulting_condition": "(`user`.`name` > 'z')"
                },
                {
                  "transformation": "trivial_condition_removal",
                  "resulting_condition": "(`user`.`name` > 'z')"
                }
              ] /* steps */
            } /* condition_processing */
          },
          {
            "substitute_generated_columns": {
            } /* substitute_generated_columns */
          },
          {
            "table_dependencies": [
              {
                "table": "`user`",
                "row_may_be_null": false,
                "map_bit": 0,
                "depends_on_map_bits": [
                ] /* depends_on_map_bits */
              }
            ] /* table_dependencies */
          },
          {
            "ref_optimizer_key_uses": [
            ] /* ref_optimizer_key_uses */
          },
          {
            "rows_estimation": [
              {
                "table": "`user`",
                "range_analysis": {
                  "table_scan": {
                    "rows": 100066,
                    "cost": 20368
                  } /* table_scan */,
                  "potential_range_indexes": [
                    {
                      "index": "PRIMARY",
                      "usable": false,
                      "cause": "not_applicable"
                    },
                    {
                      "index": "idx_name_age_address",
                      "usable": true,
                      "key_parts": [
                        "name",
                        "age",
                        "address",
                        "id"
                      ] /* key_parts */
                    }
                  ] /* potential_range_indexes */,
                  "setup_range_conditions": [
                  ] /* setup_range_conditions */,
                  "group_index_range": {
                    "chosen": false,
                    "cause": "not_group_by_or_distinct"
                  } /* group_index_range */,
                  "analyzing_range_alternatives": {
                    "range_scan_alternatives": [
                      {
                        "index": "idx_name_age_address",
                        "ranges": [
                          "z < name"
                        ] /* ranges */,
                        "index_dives_for_eq_ranges": true,
                        "rowid_ordered": false,
                        "using_mrr": false,
                        "index_only": false,
                        "rows": 1,
                        "cost": 2.21,
                        "chosen": true
                      }
                    ] /* range_scan_alternatives */,
                    "analyzing_roworder_intersect": {
                      "usable": false,
                      "cause": "too_few_roworder_scans"
                    } /* analyzing_roworder_intersect */
                  } /* analyzing_range_alternatives */,
                  "chosen_range_access_summary": {
                    "range_access_plan": {
                      "type": "range_scan",
                      "index": "idx_name_age_address",
                      "rows": 1,
                      "ranges": [
                        "z < name"
                      ] /* ranges */
                    } /* range_access_plan */,
                    "rows_for_plan": 1,
                    "cost_for_plan": 2.21,
                    "chosen": true
                  } /* chosen_range_access_summary */
                } /* range_analysis */
              }
            ] /* rows_estimation */
          },
          {
            "considered_execution_plans": [
              {
                "plan_prefix": [
                ] /* plan_prefix */,
                "table": "`user`",
                "best_access_path": {
                  "considered_access_paths": [
                    {
                      "rows_to_scan": 1,
                      "access_type": "range",
                      "range_details": {
                        "used_index": "idx_name_age_address"
                      } /* range_details */,
                      "resulting_rows": 1,
                      "cost": 2.41,
                      "chosen": true,
                      "use_tmp_table": true
                    }
                  ] /* considered_access_paths */
                } /* best_access_path */,
                "condition_filtering_pct": 100,
                "rows_for_plan": 1,
                "cost_for_plan": 2.41,
                "sort_cost": 1,
                "new_cost_for_plan": 3.41,
                "chosen": true
              }
            ] /* considered_execution_plans */
          },
          {
            "attaching_conditions_to_tables": {
              "original_condition": "(`user`.`name` > 'z')",
              "attached_conditions_computation": [
              ] /* attached_conditions_computation */,
              "attached_conditions_summary": [
                {
                  "table": "`user`",
                  "attached": "(`user`.`name` > 'z')"
                }
              ] /* attached_conditions_summary */
            } /* attaching_conditions_to_tables */
          },
          {
            "clause_processing": {
              "clause": "ORDER BY",
              "original_clause": "`user`.`address`",
              "items": [
                {
                  "item": "`user`.`address`"
                }
              ] /* items */,
              "resulting_clause_is_simple": true,
              "resulting_clause": "`user`.`address`"
            } /* clause_processing */
          },
          {
            "reconsidering_access_paths_for_index_ordering": {
              "clause": "ORDER BY",
              "index_order_summary": {
                "table": "`user`",
                "index_provides_order": false,
                "order_direction": "undefined",
                "index": "idx_name_age_address",
                "plan_changed": false
              } /* index_order_summary */
            } /* reconsidering_access_paths_for_index_ordering */
          },
          {
            "refine_plan": [
              {
                "table": "`user`",
                "pushed_index_condition": "(`user`.`name` > 'z')",
                "table_condition_attached": null
              }
            ] /* refine_plan */
          }
        ] /* steps */
      } /* join_optimization */
    },
    {
      "join_execution": {
        "select#": 1,
        "steps": [
          {
            "filesort_information": [
              {
                "direction": "asc",
                "table": "`user`",
                "field": "address"
              }
            ] /* filesort_information */,
            "filesort_priority_queue_optimization": {
              "usable": false,
              "cause": "not applicable (no LIMIT)"
            } /* filesort_priority_queue_optimization */,
            "filesort_execution": [
            ] /* filesort_execution */,
            "filesort_summary": {
              "rows": 0,
              "examined_rows": 0,
              "number_of_tmp_files": 0,
              "sort_buffer_size": 261960,
              "sort_mode": "<sort_key, packed_additional_fields>"
            } /* filesort_summary */
          }
        ] /* steps */
      } /* join_execution */
    }
  ] /* steps */
}
  大数据 最新文章
实现Kafka至少消费一次
亚马逊云科技:还在苦于ETL?Zero ETL的时代
初探MapReduce
【SpringBoot框架篇】32.基于注解+redis实现
Elasticsearch:如何减少 Elasticsearch 集
Go redis操作
Redis面试题
专题五 Redis高并发场景
基于GBase8s和Calcite的多数据源查询
Redis——底层数据结构原理
上一篇文章      下一篇文章      查看所有文章
加:2022-05-19 11:58:28  更:2022-05-19 11:58:56 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/16 6:36:16-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码