IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 大数据 -> Kafka生产级容量评估 -> 正文阅读

[大数据]Kafka生产级容量评估

一、需求场景分析

1.1?集群如何每天hold住10亿+请求

拿电商平台为例,kafka 集群每天需要承载10亿+请求流量数据,一天24小时,对于平台来说,晚上12点到凌晨8点这8个小时几乎没多少数据涌入的。这里我们使用「二八法则」来进行预估,也就是80%的数据(8亿)会在剩余的16个小时涌入,且8亿中的80%的数据(约6.4亿)会在这16个小时的20%时间 (约3小时)涌入。

通过上面的场景分析,可以得出如下:

QPS计算公式 = 640000000 ÷ (3 * 60 * 60) = 6万,也就是说高峰期集群需要扛住每秒6万的并发请求。

假设每条数据平均按20kb(生产端有数据汇总)来算, 那就是 1000000000 * 20kb = 18T,一般情况下我们都会设置3个副本,54T,另外 kafka 数据是有保留时间周期的, 一般情况是保留最近3天的数据,54T * 3 = 162T。

1.2 场景总结

要搞定10亿+请求,高峰期要支撑6万QPS,需要大约162T的存储空间。

二、物理机数量评估

2.1?物理机 OR 虚拟机

一般对于Kafka,Mysql,Hadoop 等集群自建的时候,都会使用物理机来进行搭建,性能和稳定性相对虚拟机要强很多。

2.2?物理机数量计算

在章节1.1中我们分析得出系统高峰期的时候要支撑6万QPS,如果公司资金和资源充足的情况下,我们一般会让高峰期的QPS控制在集群总承载QPS能力的30%左右,这样的话可以得出集群能承载的总QPS能力约为20万(6万/30%=20万)左右这样系统才会是安全的。

2.3?场景总结

根据经验可以得出每台物理机支撑4万QPS是没有问题的,从QPS角度分析,我们要支撑10亿+请求,大约需要5(20万QPS/4万QPS每台机)台物理机,考虑到消费者请求,需要增加约1.5倍机器,即7台物理机。

三、磁盘评估

3.1?机械硬盘 OR 固态硬盘SSD

两者主要区别如下:

  • SSD就是固态硬盘,它的优点是速度快,日常的读写比机械硬盘快几十倍上百倍。缺点是单位成本高,不适合做大容量存储。

  • HDD就是机械硬盘,它的优点是单位成本低,适合做大容量存储,但速度远不如SSD。

首先SSD硬盘性能好,主要是指的随机读写能力性能好,非常适合Mysql这样的集群,而SSD的顺序读写性能跟机械硬盘的性能是差不多的。

Kafka 写磁盘是顺序追加写的,所以对于 kafka 集群来说,我们使用普通机械硬盘就可以了。

3.2 每台服务器需要多少块硬盘?

根据第一二步骤计算结果,我们需要7台物理机,一共需要存储162T数据,大约每台机器需要存储23T数据,根据以往经验一般服务器配置11块硬盘,这样每块硬盘大约存储2T的数据就可以了,另外为了服务器性能和稳定性,我们一般要保留一部分空间,保守按每块硬盘最大能存储3T数据。

3.3 场景总结

要搞定10亿+请求,需要7台物理机,使用普通机械硬盘进行存储,每台服务器11块硬盘,每块硬盘存储2T数据。

四、内存评估

4.1?Kafka 写磁盘流程及内存分析

?从上图可以得出 Kafka 读写数据的流程主要都是基于os cache,所以基本上 Kafka 都是基于内存来进行数据流转的,这样的话要分配尽可能多的内存资源给os cache。

kafka的核心源码基本都是用 scala 和 java (客户端)写的,底层都是基于 JVM 来运行的,所以要分配一定的内存给 JVM 以保证服务的稳定性。对于 Kafka 的设计,并没有把很多的数据结构存储到 JVM 中,所以根据经验,给 JVM 分配6~10G就足够了。

从上图可以看出一个 Topic 会对于多个 partition,一个 partition 会对应多个 segment ,一个 segment 会对应磁盘上4个log文件。假设我们这个平台总共100个 Topic ,那么总共有?100 Topic * 5 partition * 3 副本 = 1500 partition 。对于 partition 来说实际上就是物理机上一个文件目录,?.log就是存储数据文件的,默认情况下一个.log日志文件大小为1G。

如果要保证这1500个 partition 的最新的 .log 文件的数据都在内存中,这样性能当然是最好的,需要?1500? * 1G = 1500 G内存,但是我们没有必要所有的数据都驻留到内存中,我们只保证25%左右的数据在内存中就可以了,这样大概需要?1500 * 250M = 1500 * 0.25G = 375G内存,通过第二步分析结果,我们总共需要7台物理机,这样的话每台服务器只需要约54G内存,外加上面分析的JVM的10G,总共需要64G内存。还要保留一部分内存给操作系统使用,故我们选择128G内存的服务器是非常够用了。

4.2 场景总结

要搞定10亿+请求,需要7台物理机,每台物理机内存选择128G内存为主,这样内存会比较充裕。

五、CPU压力评估

5.1 CPU Core分析

我们评估需要多少个 CPU Core,主要是看 Kafka 进程里会有多少个线程,线程主要是依托多核CPU来执行的,如果线程特别多,但是 CPU核很少,就会导致CPU负载很高,会导致整体工作线程执行的效率不高,性能也不会好。所以我们要保证CPU Core的充足,来保障系统的稳定性和性能最优。

5.2 Kafka 网络架构及线程数计算

我们评估下 Kafka 服务器启动后会有多少线程在跑,其实这部分内容跟kafka超高并发网络架构密切相关,上图是Kafka 超高并发网络架构图,从图中我们可以分析得出:

?除了上图所列的还有其他一些线程,所以估算下来,一个 kafka 服务启动后,会有100多个线程在跑。

?5.3 场景总结

要搞定10亿+请求,需要7台物理机,每台物理机内存选择128G内存为主,需要16个cpu core(32个性能更好)。

六、网卡评估

6.1?网卡对比分析

?通过上图分析可以得出千兆网卡和万兆网卡的区别最大之处在于网口的传输速率的不同,千兆网卡的传输速率是1000Mbps,万兆网卡的则是10Gbps万兆网卡是千兆网卡传输速率的10倍。性能上讲,万兆网卡的性能肯定比千兆网卡要好。万兆网卡现在主流的是10G的,发展趋势正逐步面向40G、100G网卡。但还是要根据使用环境和预算来选择投入,毕竟千兆网卡和万兆网卡的性价比区间还是挺大的。

6.2?网卡选择分析

根据第一二步分析结果,高峰期的时候,每秒会有大约6万请求涌入,即每台机器约1万请求涌入(60000 / 7),每秒要接收的数据大小为:?10000 * 20 kb = 184 M/s,外加上数据副本的同步网络请求,总共需要?184 * 3 = 552 M/s。

?一般情况下,网卡带宽是不会达到上限的,对于千兆网卡,我们能用的基本在700M左右,通过上面计算结果,千兆网卡基本可以满足,万兆网卡更好。

6.3?场景总结

?要搞定10亿+请求,需要7台物理机,每台物理机内存选择128G内存为主,需要16个cpu core(32个性能更好),千兆网卡基本可以满足,万兆网卡更好。

七、核心参数

?八、总结

要搞定10亿+请求,经过上面深度剖析评估后需要以下资源:

评估项具体评估需要的资源量
请求量10亿+读写请求
QPS高峰期需要支撑6万QPS
存储空间162T
物理机7台
硬盘选择使用普通机械硬盘
硬盘数量每台服务器11块盘,每块盘2T数据
物理机内存64G勉强可以支撑,128G性能更佳
CPU Core16核(32核性能更佳)
网卡千兆基本可以满足,万兆性能更佳

参考资料:

1.微信公众号(华仔聊技术)-《搞定这8个Kafka生产级容量评估,每日10亿+请求轻松拿捏!》

  大数据 最新文章
实现Kafka至少消费一次
亚马逊云科技:还在苦于ETL?Zero ETL的时代
初探MapReduce
【SpringBoot框架篇】32.基于注解+redis实现
Elasticsearch:如何减少 Elasticsearch 集
Go redis操作
Redis面试题
专题五 Redis高并发场景
基于GBase8s和Calcite的多数据源查询
Redis——底层数据结构原理
上一篇文章      下一篇文章      查看所有文章
加:2022-05-21 19:02:54  更:2022-05-21 19:06:14 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/23 20:51:04-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码