最近由于项目需求使用到了 clickhouse 做分析数据库,于是用测试环境做了一个单表 6 亿数据量的性能测试,记录一下测试结果,有做超大数据量分析技术选型需求的朋友可以参考下。
服务器信息
Clickhouse信息
测试情况
测试数据和测试方法来自 clickshouse 官方的 Star Schema Benchmark,URL:https://clickhouse.com/docs/en/getting-started/example-datasets/star-schema/
按照官方指导造出了测试数据之后,先看一下数据量和空间占用情况。
数据量和空间占用

可以看到 clickhouse 的压缩率很高,压缩率都在 50 以上,基本可以达到 70 左右。数据体积的减小可以非常有效的减少磁盘空间占用、提高 I/O 性能,这对整体查询性能的提升非常有效。
supplier、customer、part、lineorder 为一个简单的「供应商-客户-订单-地区」的星型模型,lineorder_flat 为根据这个星型模型数据关系合并的大宽表,所有分析都直接在这张大宽表中执行,减少不必要的表关联,符合我们实际工作中的分析建表逻辑。
以下性能测试的所有分析 SQL 都在这张大宽表中运行,未进行表关联查询。
查询性能测试详情
Query 1.1
SELECT sum(LO_EXTENDEDPRICE * LO_DISCOUNT) AS revenueFROM lineorder_flatWHERE (toYear(LO_ORDERDATE) = 1993) AND ((LO_DISCOUNT >= 1) AND (LO_DISCOUNT <= 3)) AND (LO_QUANTITY < 25)
┌────────revenue─┐│ 44652567249651 │└────────────────┘
1 rows in set. Elapsed: 0.242 sec. Processed 91.01 million rows, 728.06 MB (375.91 million rows/s., 3.01 GB/s.)
描行数:91,010,000?大约9100万
耗时(秒):0.242
查询列数:2
结果行数:1
Query 1.2
SELECT sum(LO_EXTENDEDPRICE * LO_DISCOUNT) AS revenueFROM lineorder_flatWHERE (toYYYYMM(LO_ORDERDATE) = 199401) AND ((LO_DISCOUNT >= 4) AND (LO_DISCOUNT <= 6)) AND ((LO_QUANTITY >= 26) AND (LO_QUANTITY <= 35))
┌───────revenue─┐│ 9624332170119 │└───────────────┘
1 rows in set. Elapsed: 0.040 sec. Processed 7.75 million rows, 61.96 MB (191.44 million rows/s., 1.53 GB/s.)
描行数:7,750,000?775万
耗时(秒):0.040
查询列数:2
返回行数:1
Query 2.1
SELECT sum(LO_REVENUE), toYear(LO_ORDERDATE) AS year, P_BRANDFROM lineorder_flatWHERE (P_CATEGORY = 'MFGR#12') AND (S_REGION = 'AMERICA')GROUP BY year, P_BRANDORDER BY year ASC, P_BRAND ASC
┌─sum(LO_REVENUE)─┬─year─┬─P_BRAND───┐│ 64420005618 │ 1992 │ MFGR#121 ││ 63389346096 │ 1992 │ MFGR#1210 ││ ........... │ .... │ ..........││ 39679892915 │ 1998 │ MFGR#128 ││ 35300513083 │ 1998 │ MFGR#129 │└─────────────────┴──────┴───────────┘
280?rows?in?set.?Elapsed:?8.558?sec.?Processed?600.04?million?rows,?6.20?GB?(70.11?million?rows/s.,?725.04?MB/s.)
扫描行数:600,040,000?大约6亿
耗时(秒):8.558
查询列数:3
结果行数:280
Query 2.2
???????
SELECT sum(LO_REVENUE), toYear(LO_ORDERDATE) AS year, P_BRANDFROM lineorder_flatWHERE ((P_BRAND >= 'MFGR#2221') AND (P_BRAND <= 'MFGR#2228')) AND (S_REGION = 'ASIA')GROUP BY year, P_BRANDORDER BY year ASC, P_BRAND ASC
┌─sum(LO_REVENUE)─┬─year─┬─P_BRAND───┐│ 66450349438 │ 1992 │ MFGR#2221 ││ 65423264312 │ 1992 │ MFGR#2222 ││ ........... │ .... │ ......... ││ 39907545239 │ 1998 │ MFGR#2227 ││ 40654201840 │ 1998 │ MFGR#2228 │└─────────────────┴──────┴───────────┘
56 rows in set. Elapsed: 1.242 sec. Processed 600.04 million rows, 5.60 GB (482.97 million rows/s., 4.51 GB/s.)
扫描行数:600,040,000?大约6亿
耗时(秒):1.242
查询列数:3
结果行数:56
Query 3.1
???????
SELECT C_NATION, S_NATION, toYear(LO_ORDERDATE) AS year, sum(LO_REVENUE) AS revenueFROM lineorder_flatWHERE (C_REGION = 'ASIA') AND (S_REGION = 'ASIA') AND (year >= 1992) AND (year <= 1997)GROUP BY C_NATION, S_NATION, yearORDER BY year ASC, revenue DESC
┌─C_NATION──┬─S_NATION──┬─year─┬──────revenue─┐│ INDIA │ INDIA │ 1992 │ 537778456208 ││ INDONESIA │ INDIA │ 1992 │ 536684093041 ││ ..... │ ....... │ .... │ ............ ││ CHINA │ CHINA │ 1997 │ 525562838002 ││ JAPAN │ VIETNAM │ 1997 │ 525495763677 │└───────────┴───────────┴──────┴──────────────┘
150 rows in set. Elapsed: 3.533 sec. Processed 546.67 million rows, 5.48 GB (154.72 million rows/s., 1.55 GB/s.)
扫描行数:546,670,000?大约5亿4千多万
耗时(秒):3.533
查询列数:4
结果行数:150
Query 3.2
???????
SELECT C_CITY, S_CITY, toYear(LO_ORDERDATE) AS year, sum(LO_REVENUE) AS revenueFROM lineorder_flatWHERE (C_NATION = 'UNITED STATES') AND (S_NATION = 'UNITED STATES') AND (year >= 1992) AND (year <= 1997)GROUP BY C_CITY, S_CITY, yearORDER BY year ASC, revenue DESC
┌─C_CITY─────┬─S_CITY─────┬─year─┬────revenue─┐│ UNITED ST6 │ UNITED ST6 │ 1992 │ 5694246807 ││ UNITED ST0 │ UNITED ST0 │ 1992 │ 5676049026 ││ .......... │ .......... │ .... │ .......... ││ UNITED ST9 │ UNITED ST9 │ 1997 │ 4836163349 ││ UNITED ST9 │ UNITED ST5 │ 1997 │ 4769919410 │└────────────┴────────────┴──────┴────────────┘
600 rows in set. Elapsed: 1.000 sec. Processed 546.67 million rows, 5.56 GB (546.59 million rows/s., 5.56 GB/s.)
查询列数:4
结果行数:600
Query 4.1
???????
SELECT toYear(LO_ORDERDATE) AS year, C_NATION, sum(LO_REVENUE - LO_SUPPLYCOST) AS profitFROM lineorder_flatWHERE (C_REGION = 'AMERICA') AND (S_REGION = 'AMERICA') AND ((P_MFGR = 'MFGR#1') OR (P_MFGR = 'MFGR#2'))GROUP BY year, C_NATIONORDER BY year ASC, C_NATION ASC
┌─year─┬─C_NATION──────┬────────profit─┐│ 1992 │ ARGENTINA │ 1041983042066 ││ 1992 │ BRAZIL │ 1031193572794 ││ .... │ ...... │ ............ ││ 1998 │ PERU │ 603980044827 ││ 1998 │ UNITED STATES │ 605069471323 │└──────┴───────────────┴───────────────┘
35?rows?in?set.?Elapsed:?5.066?sec.?Processed?600.04?million?rows,?8.41?GB?(118.43?million?rows/s.,?1.66?GB/s.)??
扫描行数:600,040,000?大约6亿
耗时(秒):5.066
查询列数:4
结果行数:35
Query 4.2
??????????????
SELECT toYear(LO_ORDERDATE) AS year, S_NATION, P_CATEGORY, sum(LO_REVENUE - LO_SUPPLYCOST) AS profitFROM lineorder_flatWHERE (C_REGION = 'AMERICA') AND (S_REGION = 'AMERICA') AND ((year = 1997) OR (year = 1998)) AND ((P_MFGR = 'MFGR#1') OR (P_MFGR = 'MFGR#2'))GROUP BY year, S_NATION, P_CATEGORYORDER BY year ASC, S_NATION ASC, P_CATEGORY ASC
┌─year─┬─S_NATION──────┬─P_CATEGORY─┬───────profit─┐│ 1997 │ ARGENTINA │ MFGR#11 │ 102369950215 ││ 1997 │ ARGENTINA │ MFGR#12 │ 103052774082 ││ .... │ ......... │ ....... │ ............ ││ 1998 │ UNITED STATES │ MFGR#24 │ 60779388345 ││ 1998 │ UNITED STATES │ MFGR#25 │ 60042710566 │└──────┴───────────────┴────────────┴──────────────┘
100?rows?in?set.?Elapsed:?0.826?sec.?Processed?144.42?million?rows,?2.17?GB?(174.78?million?rows/s.,?2.63?GB/s.)
扫描行数:144,420,000?大约1亿4千多万
耗时(秒):0.826
查询列数:4
结果行数:100
性能测试结果汇总

在当前软硬件环境下,扫描 6 亿多行数据,常见的分析语句首次运行最慢在 8 秒左右能返回结果,相同的分析逻辑更换条件再次查询的时候效率有明显的提升,可以缩短到 1 秒左右,如果只是简单的列查询没有加减乘除、聚合等逻辑,扫描全表 6 亿多行数据首次查询基本可以在 2 秒内执行完成。
|