IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 大数据 -> HDFS客户端环境准备、HDFS的API操作、HDFS的I/O流操作 -> 正文阅读

[大数据]HDFS客户端环境准备、HDFS的API操作、HDFS的I/O流操作

一、HDFS客户端环境准备

1、配置hadoop的环境变量

?

2、创建一个maven的工程

3、导入相应的依赖坐标+日志添加?

<dependencies>
		<dependency>
			<groupId>junit</groupId>
			<artifactId>junit</artifactId>
			<version>RELEASE</version>
		</dependency>
		<dependency>
			<groupId>org.apache.logging.log4j</groupId>
			<artifactId>log4j-core</artifactId>
			<version>2.8.2</version>
		</dependency>
		<dependency>
			<groupId>org.apache.hadoop</groupId>
			<artifactId>hadoop-common</artifactId>
			<version>2.7.2</version>
		</dependency>
		<dependency>
			<groupId>org.apache.hadoop</groupId>
			<artifactId>hadoop-client</artifactId>
			<version>2.7.2</version>
		</dependency>
		<dependency>
			<groupId>org.apache.hadoop</groupId>
			<artifactId>hadoop-hdfs</artifactId>
			<version>2.7.2</version>
		</dependency>
		<dependency>
			<groupId>jdk.tools</groupId>
			<artifactId>jdk.tools</artifactId>
			<version>1.8</version>
			<scope>system</scope>
			<systemPath>${JAVA_HOME}/lib/tools.jar</systemPath>
		</dependency>
</dependencies>

4、创建log4j.properties文件

log4j.rootLogger=INFO, stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n
log4j.appender.logfile=org.apache.log4j.FileAppender
log4j.appender.logfile.File=target/spring.log
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n

?5、创建HdfsClient类

package com.kgf.hadoop;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;

import java.io.IOException;
import java.net.URI;
import java.net.URISyntaxException;

public class HdfsClient {

    public static void main(String[] args) throws URISyntaxException, IOException, InterruptedException {

        // 1 获取文件系统
        Configuration configuration = new Configuration();

        FileSystem fs = FileSystem.get(new URI("hdfs://hadoop20:9000"), configuration, "kgf");

        // 2 创建目录
        fs.mkdirs(new Path("/1108/daxian/banzhang"));

        // 3 关闭资源
        fs.close();
    }

}

运行之后的效果:

6、我们也可以换种方式去指定运行时的用户名称?

package com.kgf.hadoop;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;

import java.io.IOException;
import java.net.URI;
import java.net.URISyntaxException;

public class HdfsClient {

    public static void main(String[] args) throws URISyntaxException, IOException, InterruptedException {

        // 1 获取文件系统
        Configuration configuration = new Configuration();

//        FileSystem fs = FileSystem.get(new URI("hdfs://hadoop20:9000"), configuration, "kgf");

        // 配置在集群上运行
         configuration.set("fs.defaultFS", "hdfs://hadoop20:9000");
         FileSystem fs = FileSystem.get(configuration);

        // 2 创建目录
        fs.mkdirs(new Path("/kgf/test"));

        // 3 关闭资源
        fs.close();

        System.out.println("over!");
    }
}

客户端去操作HDFS时,是有一个用户身份的。默认情况下,HDFS客户端API会从JVM中获取一个参数来作为自己的用户身份:-DHADOOP_USER_NAME=kgf,kgf为用户名称。

然后运行结果:

二、HDFS的API操作

1、HDFS文件上传(测试参数优先级)

 /**
     * HDFS文件上传
     * @throws IOException
     * @throws InterruptedException
     * @throws URISyntaxException
     */
    private void testCopyFromLocalFile() throws IOException, InterruptedException, URISyntaxException {
        // 1 获取文件系统
        Configuration configuration = new Configuration();
        configuration.set("dfs.replication", "2");//设置副本数量
        FileSystem fs = FileSystem.get(new URI("hdfs://hadoop20:9000"), configuration, "kgf");

        // 2 上传文件
        fs.copyFromLocalFile(new Path("e:/banzhang.txt"), new Path("/banzhang.txt"));

        // 3 关闭资源
        fs.close();
        System.out.println("over");
    }

将hdfs-site.xml拷贝到项目的根目录下

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
    <property>
        <name>dfs.replication</name>
        <value>1</value>
    </property>
</configuration>

执行效果如下:

?可以发现副本数是2:

参数优先级排序:

(1)客户端代码中设置的值 >

(2)ClassPath下的用户自定义配置文件 >

(3)然后是服务器的默认配置

2、HDFS文件下载

/***
     * HDFS文件下载
     * @throws IOException
     * @throws InterruptedException
     * @throws URISyntaxException
     */
    public void testCopyToLocalFile() throws IOException, InterruptedException, URISyntaxException{

        // 1 获取文件系统
        Configuration configuration = new Configuration();
        FileSystem fs = FileSystem.get(new URI("hdfs://hadoop20:9000"), configuration, "kgf");

        // 2 执行下载操作
        // boolean delSrc 指是否将原文件删除
        // Path src 指要下载的文件路径
        // Path dst 指将文件下载到的路径
        // boolean useRawLocalFileSystem 是否开启文件校验
        fs.copyToLocalFile(false, new Path("/banzhang.txt"), new Path("e:/banhua.txt"), true);

        // 3 关闭资源
        fs.close();
    }

3、HDFS文件夹删除

/***
     * HDFS文件夹删除
     * @throws IOException
     * @throws InterruptedException
     * @throws URISyntaxException
     */
    public void testDelete() throws IOException, InterruptedException, URISyntaxException{

        // 1 获取文件系统
        Configuration configuration = new Configuration();
        FileSystem fs = FileSystem.get(new URI("hdfs://hadoop20:9000"), configuration, "kgf");

        // 2 执行删除
        fs.delete(new Path("/1108/"), true);

        // 3 关闭资源
        fs.close();
    }

4、HDFS文件名更改

/***
     * HDFS文件名更改
     * @throws IOException
     * @throws InterruptedException
     * @throws URISyntaxException
     */
    public void testRename() throws IOException, InterruptedException, URISyntaxException{
        // 1 获取文件系统
        Configuration configuration = new Configuration();
        FileSystem fs = FileSystem.get(new URI("hdfs://hadoop20:9000"), configuration, "kgf");
        // 2 修改文件名称
        fs.rename(new Path("/banzhang.txt"), new Path("/banhua.txt"));
        // 3 关闭资源
        fs.close();
        System.out.println("over!");
    }

5、HDFS文件详情查看

/***
     * 查看文件名称、权限、长度、块信息
     * @throws IOException
     * @throws InterruptedException
     * @throws URISyntaxException
     */
    public void testListFiles() throws IOException, InterruptedException, URISyntaxException{

        // 1获取文件系统
        Configuration configuration = new Configuration();
        FileSystem fs = FileSystem.get(new URI("hdfs://hadoop20:9000"), configuration, "kgf");

        // 2 获取文件详情
        RemoteIterator<LocatedFileStatus> listFiles = fs.listFiles(new Path("/"), true);

        while(listFiles.hasNext()){
            LocatedFileStatus status = listFiles.next();

            // 输出详情
            // 文件名称
            System.out.println(status.getPath().getName());
            // 长度
            System.out.println(status.getLen());
            // 权限
            System.out.println(status.getPermission());
            // 分组
            System.out.println(status.getGroup());

            // 获取存储的块信息
            BlockLocation[] blockLocations = status.getBlockLocations();

            for (BlockLocation blockLocation : blockLocations) {

                // 获取块存储的主机节点
                String[] hosts = blockLocation.getHosts();

                for (String host : hosts) {
                    System.out.println(host);
                }
            }

            System.out.println("-----------班长的分割线----------");
        }

        // 3 关闭资源
        fs.close();
    }

效果(将目录下的文件都递归查询出来了):

D:\jdk1.8.0_51\bin\java.exe -Dvisualvm.id=1345450326278400 -javaagent:D:\JetBrains\idea20190303\lib\idea_rt.jar=1048:D:\JetBrains\idea20190303\bin -Dfile.encoding=UTF-8 -classpath D:\jdk1.8.0_51\jre\lib\charsets.jar;D:\jdk1.8.0_51\jre\lib\deploy.jar;D:\jdk1.8.0_51\jre\lib\ext\access-bridge-64.jar;D:\jdk1.8.0_51\jre\lib\ext\cldrdata.jar;D:\jdk1.8.0_51\jre\lib\ext\dnsns.jar;D:\jdk1.8.0_51\jre\lib\ext\jaccess.jar;D:\jdk1.8.0_51\jre\lib\ext\jfxrt.jar;D:\jdk1.8.0_51\jre\lib\ext\localedata.jar;D:\jdk1.8.0_51\jre\lib\ext\nashorn.jar;D:\jdk1.8.0_51\jre\lib\ext\sunec.jar;D:\jdk1.8.0_51\jre\lib\ext\sunjce_provider.jar;D:\jdk1.8.0_51\jre\lib\ext\sunmscapi.jar;D:\jdk1.8.0_51\jre\lib\ext\sunpkcs11.jar;D:\jdk1.8.0_51\jre\lib\ext\zipfs.jar;D:\jdk1.8.0_51\jre\lib\javaws.jar;D:\jdk1.8.0_51\jre\lib\jce.jar;D:\jdk1.8.0_51\jre\lib\jfr.jar;D:\jdk1.8.0_51\jre\lib\jfxswt.jar;D:\jdk1.8.0_51\jre\lib\jsse.jar;D:\jdk1.8.0_51\jre\lib\management-agent.jar;D:\jdk1.8.0_51\jre\lib\plugin.jar;D:\jdk1.8.0_51\jre\lib\resources.jar;D:\jdk1.8.0_51\jre\lib\rt.jar;E:\WorkSpace\hadoop-demo\java-hadoop-demo\target\classes;D:\software\maven\repository\junit\junit\4.13.2\junit-4.13.2.jar;D:\software\maven\repository\org\hamcrest\hamcrest-core\1.3\hamcrest-core-1.3.jar;D:\software\maven\repository\org\apache\logging\log4j\log4j-core\2.8.2\log4j-core-2.8.2.jar;D:\software\maven\repository\org\apache\logging\log4j\log4j-api\2.8.2\log4j-api-2.8.2.jar;D:\software\maven\repository\org\apache\hadoop\hadoop-common\2.7.2\hadoop-common-2.7.2.jar;D:\software\maven\repository\org\apache\hadoop\hadoop-annotations\2.7.2\hadoop-annotations-2.7.2.jar;D:\software\maven\repository\com\google\guava\guava\11.0.2\guava-11.0.2.jar;D:\software\maven\repository\commons-cli\commons-cli\1.2\commons-cli-1.2.jar;D:\software\maven\repository\org\apache\commons\commons-math3\3.1.1\commons-math3-3.1.1.jar;D:\software\maven\repository\xmlenc\xmlenc\0.52\xmlenc-0.52.jar;D:\software\maven\repository\commons-httpclient\commons-httpclient\3.1\commons-httpclient-3.1.jar;D:\software\maven\repository\commons-codec\commons-codec\1.4\commons-codec-1.4.jar;D:\software\maven\repository\commons-io\commons-io\2.4\commons-io-2.4.jar;D:\software\maven\repository\commons-net\commons-net\3.1\commons-net-3.1.jar;D:\software\maven\repository\commons-collections\commons-collections\3.2.2\commons-collections-3.2.2.jar;D:\software\maven\repository\javax\servlet\servlet-api\2.5\servlet-api-2.5.jar;D:\software\maven\repository\org\mortbay\jetty\jetty\6.1.26\jetty-6.1.26.jar;D:\software\maven\repository\org\mortbay\jetty\jetty-util\6.1.26\jetty-util-6.1.26.jar;D:\software\maven\repository\javax\servlet\jsp\jsp-api\2.1\jsp-api-2.1.jar;D:\software\maven\repository\com\sun\jersey\jersey-core\1.9\jersey-core-1.9.jar;D:\software\maven\repository\com\sun\jersey\jersey-json\1.9\jersey-json-1.9.jar;D:\software\maven\repository\org\codehaus\jettison\jettison\1.1\jettison-1.1.jar;D:\software\maven\repository\com\sun\xml\bind\jaxb-impl\2.2.3-1\jaxb-impl-2.2.3-1.jar;D:\software\maven\repository\javax\xml\bind\jaxb-api\2.2.2\jaxb-api-2.2.2.jar;D:\software\maven\repository\javax\xml\stream\stax-api\1.0-2\stax-api-1.0-2.jar;D:\software\maven\repository\javax\activation\activation\1.1\activation-1.1.jar;D:\software\maven\repository\org\codehaus\jackson\jackson-jaxrs\1.8.3\jackson-jaxrs-1.8.3.jar;D:\software\maven\repository\org\codehaus\jackson\jackson-xc\1.8.3\jackson-xc-1.8.3.jar;D:\software\maven\repository\com\sun\jersey\jersey-server\1.9\jersey-server-1.9.jar;D:\software\maven\repository\asm\asm\3.1\asm-3.1.jar;D:\software\maven\repository\commons-logging\commons-logging\1.1.3\commons-logging-1.1.3.jar;D:\software\maven\repository\log4j\log4j\1.2.17\log4j-1.2.17.jar;D:\software\maven\repository\net\java\dev\jets3t\jets3t\0.9.0\jets3t-0.9.0.jar;D:\software\maven\repository\org\apache\httpcomponents\httpclient\4.1.2\httpclient-4.1.2.jar;D:\software\maven\repository\org\apache\httpcomponents\httpcore\4.1.2\httpcore-4.1.2.jar;D:\software\maven\repository\com\jamesmurty\utils\java-xmlbuilder\0.4\java-xmlbuilder-0.4.jar;D:\software\maven\repository\commons-lang\commons-lang\2.6\commons-lang-2.6.jar;D:\software\maven\repository\commons-configuration\commons-configuration\1.6\commons-configuration-1.6.jar;D:\software\maven\repository\commons-digester\commons-digester\1.8\commons-digester-1.8.jar;D:\software\maven\repository\commons-beanutils\commons-beanutils\1.7.0\commons-beanutils-1.7.0.jar;D:\software\maven\repository\commons-beanutils\commons-beanutils-core\1.8.0\commons-beanutils-core-1.8.0.jar;D:\software\maven\repository\org\slf4j\slf4j-api\1.7.10\slf4j-api-1.7.10.jar;D:\software\maven\repository\org\slf4j\slf4j-log4j12\1.7.10\slf4j-log4j12-1.7.10.jar;D:\software\maven\repository\org\codehaus\jackson\jackson-core-asl\1.9.13\jackson-core-asl-1.9.13.jar;D:\software\maven\repository\org\codehaus\jackson\jackson-mapper-asl\1.9.13\jackson-mapper-asl-1.9.13.jar;D:\software\maven\repository\org\apache\avro\avro\1.7.4\avro-1.7.4.jar;D:\software\maven\repository\com\thoughtworks\paranamer\paranamer\2.3\paranamer-2.3.jar;D:\software\maven\repository\org\xerial\snappy\snappy-java\1.0.4.1\snappy-java-1.0.4.1.jar;D:\software\maven\repository\com\google\protobuf\protobuf-java\2.5.0\protobuf-java-2.5.0.jar;D:\software\maven\repository\com\google\code\gson\gson\2.2.4\gson-2.2.4.jar;D:\software\maven\repository\org\apache\hadoop\hadoop-auth\2.7.2\hadoop-auth-2.7.2.jar;D:\software\maven\repository\org\apache\directory\server\apacheds-kerberos-codec\2.0.0-M15\apacheds-kerberos-codec-2.0.0-M15.jar;D:\software\maven\repository\org\apache\directory\server\apacheds-i18n\2.0.0-M15\apacheds-i18n-2.0.0-M15.jar;D:\software\maven\repository\org\apache\directory\api\api-asn1-api\1.0.0-M20\api-asn1-api-1.0.0-M20.jar;D:\software\maven\repository\org\apache\directory\api\api-util\1.0.0-M20\api-util-1.0.0-M20.jar;D:\software\maven\repository\org\apache\curator\curator-framework\2.7.1\curator-framework-2.7.1.jar;D:\software\maven\repository\com\jcraft\jsch\0.1.42\jsch-0.1.42.jar;D:\software\maven\repository\org\apache\curator\curator-client\2.7.1\curator-client-2.7.1.jar;D:\software\maven\repository\org\apache\curator\curator-recipes\2.7.1\curator-recipes-2.7.1.jar;D:\software\maven\repository\com\google\code\findbugs\jsr305\3.0.0\jsr305-3.0.0.jar;D:\software\maven\repository\org\apache\htrace\htrace-core\3.1.0-incubating\htrace-core-3.1.0-incubating.jar;D:\software\maven\repository\org\apache\zookeeper\zookeeper\3.4.6\zookeeper-3.4.6.jar;D:\software\maven\repository\org\apache\commons\commons-compress\1.4.1\commons-compress-1.4.1.jar;D:\software\maven\repository\org\tukaani\xz\1.0\xz-1.0.jar;D:\software\maven\repository\org\apache\hadoop\hadoop-client\2.7.2\hadoop-client-2.7.2.jar;D:\software\maven\repository\org\apache\hadoop\hadoop-mapreduce-client-app\2.7.2\hadoop-mapreduce-client-app-2.7.2.jar;D:\software\maven\repository\org\apache\hadoop\hadoop-mapreduce-client-common\2.7.2\hadoop-mapreduce-client-common-2.7.2.jar;D:\software\maven\repository\org\apache\hadoop\hadoop-yarn-client\2.7.2\hadoop-yarn-client-2.7.2.jar;D:\software\maven\repository\org\apache\hadoop\hadoop-yarn-server-common\2.7.2\hadoop-yarn-server-common-2.7.2.jar;D:\software\maven\repository\org\apache\hadoop\hadoop-mapreduce-client-shuffle\2.7.2\hadoop-mapreduce-client-shuffle-2.7.2.jar;D:\software\maven\repository\org\apache\hadoop\hadoop-yarn-api\2.7.2\hadoop-yarn-api-2.7.2.jar;D:\software\maven\repository\org\apache\hadoop\hadoop-mapreduce-client-core\2.7.2\hadoop-mapreduce-client-core-2.7.2.jar;D:\software\maven\repository\org\apache\hadoop\hadoop-yarn-common\2.7.2\hadoop-yarn-common-2.7.2.jar;D:\software\maven\repository\com\sun\jersey\jersey-client\1.9\jersey-client-1.9.jar;D:\software\maven\repository\org\apache\hadoop\hadoop-mapreduce-client-jobclient\2.7.2\hadoop-mapreduce-client-jobclient-2.7.2.jar;D:\software\maven\repository\org\apache\hadoop\hadoop-hdfs\2.7.2\hadoop-hdfs-2.7.2.jar;D:\software\maven\repository\commons-daemon\commons-daemon\1.0.13\commons-daemon-1.0.13.jar;D:\software\maven\repository\io\netty\netty\3.6.2.Final\netty-3.6.2.Final.jar;D:\software\maven\repository\io\netty\netty-all\4.0.23.Final\netty-all-4.0.23.Final.jar;D:\software\maven\repository\xerces\xercesImpl\2.9.1\xercesImpl-2.9.1.jar;D:\software\maven\repository\xml-apis\xml-apis\1.3.04\xml-apis-1.3.04.jar;D:\software\maven\repository\org\fusesource\leveldbjni\leveldbjni-all\1.8\leveldbjni-all-1.8.jar com.kgf.hadoop.HdfsApiClient
README.txt
1366
rw-r--r--
supergroup
hadoop20
hadoop22
hadoop21
-----------班长的分割线----------
banhua.txt
15
rw-r--r--
supergroup
hadoop22
hadoop21
-----------班长的分割线----------
kongming.txt
14
rw-rw-rw-
kgf
hadoop20
hadoop22
hadoop21
-----------班长的分割线----------
zhuge.txt
14
rw-r--r--
supergroup
hadoop20
hadoop22
hadoop21
-----------班长的分割线----------
wc.input
46
rw-r--r--
supergroup
hadoop20
hadoop22
hadoop21
-----------班长的分割线----------
zaiyiqi.txt
28
rw-r--r--
supergroup
hadoop20
hadoop22
hadoop21
-----------班长的分割线----------

Process finished with exit code 0

6、HDFS文件和文件夹判断

/***
     * HDFS文件和文件夹判断
     * @throws IOException
     * @throws InterruptedException
     * @throws URISyntaxException
     */
    public void testListStatus() throws IOException, InterruptedException, URISyntaxException{

        // 1 获取文件配置信息
        Configuration configuration = new Configuration();
        FileSystem fs = FileSystem.get(new URI("hdfs://hadoop20:9000"), configuration, "kgf");

        // 2 判断是文件还是文件夹
        FileStatus[] listStatus = fs.listStatus(new Path("/"));

        for (FileStatus fileStatus : listStatus) {

            // 如果是文件
            if (fileStatus.isFile()) {
                System.out.println("f:"+fileStatus.getPath().getName());
            }else {
                System.out.println("d:"+fileStatus.getPath().getName());
            }
        }

        // 3 关闭资源
        fs.close();
        System.out.println("over");
    }

效果输出:

f:README.txt
f:banhua.txt
d:kgf
d:sanguo
d:user
over

三、HDFS的I/O流操作

1、把本地e盘上的banhua.txt文件上传到HDFS根目录

 /***
     * 把本地e盘上的banhua.txt文件上传到HDFS根目录
     * @throws IOException
     * @throws InterruptedException
     * @throws URISyntaxException
     */
    public void putFileToHDFS() throws IOException, InterruptedException, URISyntaxException {

        // 1 获取文件系统
        Configuration configuration = new Configuration();
        FileSystem fs = FileSystem.get(new URI("hdfs://hadoop20:9000"), configuration, "kgf");

        // 2 创建输入流
        FileInputStream fis = new FileInputStream(new File("e:/banhua.txt"));

        // 3 获取输出流
        FSDataOutputStream fos = fs.create(new Path("/banhua2.txt"));

        // 4 流对拷
        IOUtils.copyBytes(fis, fos, configuration);

        // 5 关闭资源
        IOUtils.closeStream(fos);
        IOUtils.closeStream(fis);
        fs.close();
        System.out.println("over!");
    }

2、从HDFS上下载banhua.txt文件到本地e盘上

 /***
     * 从HDFS上下载banhua.txt文件到本地e盘上
     * @throws IOException
     * @throws InterruptedException
     * @throws URISyntaxException
     */
    public void getFileFromHDFS() throws IOException, InterruptedException, URISyntaxException{

        // 1 获取文件系统
        Configuration configuration = new Configuration();
        FileSystem fs = FileSystem.get(new URI("hdfs://hadoop20:9000"), configuration, "kgf");

        // 2 获取输入流
        FSDataInputStream fis = fs.open(new Path("/banhua.txt"));

        // 3 获取输出流
        FileOutputStream fos = new FileOutputStream(new File("e:/banhua3.txt"));

        // 4 流的对拷
        IOUtils.copyBytes(fis, fos, configuration);

        // 5 关闭资源
        IOUtils.closeStream(fos);
        IOUtils.closeStream(fis);
        fs.close();
        System.out.println("over");
    }

3、分块读取HDFS上的大文件,比如根目录下的/hadoop-2.7.2.tar.gz

?下载第一块block0(1024*1024*128=134217728=128M):

 /**
     * 下载第一块
     * @throws IOException
     * @throws InterruptedException
     * @throws URISyntaxException
     */
    public void readFileSeek1() throws IOException, InterruptedException, URISyntaxException{

        // 1 获取文件系统
        Configuration configuration = new Configuration();
        FileSystem fs = FileSystem.get(new URI("hdfs://hadoop20:9000"), configuration, "kgf");

        // 2 获取输入流
        FSDataInputStream fis = fs.open(new Path("/hadoop-2.7.2.tar.gz"));

        // 3 创建输出流
        FileOutputStream fos = new FileOutputStream(new File("e:/hadoop-2.7.2.tar.gz.part1"));

        // 4 流的拷贝
        byte[] buf = new byte[1024];

        for(int i =0 ; i < 1024 * 128; i++){//计算下载第一块1024*1024*128=134217728
            fis.read(buf);
            fos.write(buf);
        }
        // 5关闭资源
        IOUtils.closeStream(fis);
        IOUtils.closeStream(fos);
        fs.close();
    }

?下载剩余的第二块block1

 /***
     * 下载第二块
     * @throws IOException
     * @throws InterruptedException
     * @throws URISyntaxException
     */
    public void readFileSeek2() throws IOException, InterruptedException, URISyntaxException{

        // 1 获取文件系统
        Configuration configuration = new Configuration();
        FileSystem fs = FileSystem.get(new URI("hdfs://hadoop20:9000"), configuration, "kgf");

        // 2 打开输入流
        FSDataInputStream fis = fs.open(new Path("/hadoop-2.7.2.tar.gz"));

        // 3 定位输入数据位置
        fis.seek(1024*1024*128);

        // 4 创建输出流
        FileOutputStream fos = new FileOutputStream(new File("e:/hadoop-2.7.2.tar.gz.part2"));

        // 5 流的对拷
        IOUtils.copyBytes(fis, fos, configuration);

        // 6 关闭资源
        IOUtils.closeStream(fis);
        IOUtils.closeStream(fos);
    }

合并文件:

在Window命令窗口中进入到目录E:\,然后执行如下命令,对数据进行合并

type hadoop-2.7.2.tar.gz.part2 >> hadoop-2.7.2.tar.gz.part1

合并完成后,将hadoop-2.7.2.tar.gz.part1重新命名为hadoop-2.7.2.tar.gz。解压发现该tar包非常完整。

  大数据 最新文章
实现Kafka至少消费一次
亚马逊云科技:还在苦于ETL?Zero ETL的时代
初探MapReduce
【SpringBoot框架篇】32.基于注解+redis实现
Elasticsearch:如何减少 Elasticsearch 集
Go redis操作
Redis面试题
专题五 Redis高并发场景
基于GBase8s和Calcite的多数据源查询
Redis——底层数据结构原理
上一篇文章      下一篇文章      查看所有文章
加:2022-06-01 15:18:23  更:2022-06-01 15:18:28 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/24 22:47:28-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码