IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 大数据 -> 聊一聊数据库的行存与列存 -> 正文阅读

[大数据]聊一聊数据库的行存与列存

目录

存储方式比较

优缺点比较

行存与列存实验

选择建议

注意事项


好多人最开始学习数据库的时候,是关系数据库,数据以表格形式存储,一行表示一条记录。其实这种就是典型的行存储(Row-based store),将表按行存储到磁盘分区上。
而一些数据库还支持列存储(Column-based store),它将表按列存储到磁盘分区上。

存储方式比较

这两者的差异如下图:

从图上可以看出,行存的时候,一行记录的属性值存储在临近的空间,然后接着是下一条记录的属性值。
而列存的时候,单个属性所有的值存储在临近的的空间,即一列的所有数据连续存储的,每个属性有不同的空间。
这里,大家可以自行思考一下这两种那种更适合查询,那种更适合修改?
在数据写入上的对比:
1)行存储的写入是一次完成。写入建立在操作系统的文件系统上,可以保证写入过程的成功或者失败,数据的完整性因此可以确定。
2)列存储由于需要把一行记录拆分成单列保存,写入次数明显比行存储多,再加上磁头需要在盘片上移动和定位花费的时间,实际时间消耗会更大。所以,行存储在写入上占有很大的优势。
3)还有数据修改,这实际也是一次写入过程。所以,数据修改也是以行存储占优。
在数据读取上的对比:
1)行存储通常将一行数据完全取出,如果只需要其中几列数据的情况,就会存在冗余列,出于缩短处理时间的考量,消除冗余列的过程通常是在内存中进行的。
2)列存储每次读取的数据是集合的一段或者全部,不存在冗余性问题,查找内容连续存储,特别适合投影。
3) 两种存储的数据分布。由于列存储的每一列数据类型是同质的,不存在二义性问题。比如说某列数据类型为整型(int),那么它的数据集合一定是整型数据。这种情况使数据解析变得十分容易。相比之下,行存储则要复杂得多,因为在一行记录中保存了多种类型的数据,数据解析需要在多种数据类型之间频繁转换,这个操作很消耗CPU,增加了解析的时间。所以,列存储的解析过程更有利于分析大数据。
4)从数据的压缩以及更性能的读取来对比。同一列的数据,数据类型一致,列存的模式下就适合数据压缩,不同的列可以采用不同的压缩算法,压缩存储就会带来IO性能的提升。

优缺点比较

表的存储类型是表定义设计的第一步,客户业务类型是决定表的存储类型的主要因素。行、列存储模型各有优劣,建议根据实际情况选择。

行、列存优缺点及适用场景比较见下表:

行存

列存

优点

数据被保存在一起。INSERT/UPDATE容易。

  1. 查询时只有涉及到的列会被读取。
  2. 投影(Projection)很高效。
  3. 任何列都能作为索引。

缺点

选择(Selection)时即使只涉及某几列,所有数据也都会被读取。

  1. 选择完成时,被选择的列要重新组装。
  2. INSERT/UPDATE比较麻烦。
  3. 点查询不适合。

适用场景

  1. 点查询(返回记录少,基于索引的简单查询)。
  2. 增、删、改操作较多的场景。
  1. 统计分析类查询 (OLAP,比如数据仓库业务,此类型的表上会做大量的汇聚计算,且涉及的列操作较少,关联、分组操作较多)。
  2. 即时查询(查询条件不确定,行存表扫描难以使用索引)。

行存与列存实验

openGauss支持行列混合存储,可以在建表的时候指定存储方式。下面我们进行一下实验。
实验环境:华为云服务器+openGauss企业版3.0.0 + openEuler20.03
创建行存表custom1 和列存表custom2 ,插入50万条记录。

openGauss=# create table custom1 (id integer,name varchar2(20)); 
CREATE TABLE 
openGauss=# create table custom2 (id integer,name varchar2(20)) with (orientation = column); 
CREATE TABLE 
openGauss=# insert into custom1 select n,'testtt'||n from generate_series(1,500000) n; 
INSERT 0 500000 
openGauss=# insert into custom2 select * from custom1; 
INSERT 0 500000

我们看下两个表的存储空间,比较Size列,可以看出列存表比行存表占用存储空间小的非常多,差不多是行存表空间的1/7。

openGauss=# \d+ 
                                           List of relations 
 Schema |    Name    | Type  | Owner |    Size    |               Storage                | Description 
--------+------------+-------+-------+------------+--------------------------------------+------------- 
 public | custom1    | table | omm   | 24 MB      | {orientation=row,compression=no}     | 
 public | custom2    | table | omm   | 3104 kB    | {orientation=column,compression=low} | 

比较下插入一条新记录的时间,列存表要稍微慢一点。

openGauss=# explain analyze insert into custom1 values(1,'zhang3'); 
                                          QUERY PLAN 
----------------------------------------------------------------------------------------------- 
 [Bypass] 
 Insert on custom1  (cost=0.00..0.01 rows=1 width=0) (actual time=0.059..0.060 rows=1 loops=1) 
   ->  Result  (cost=0.00..0.01 rows=1 width=0) (actual time=0.001..0.001 rows=1 loops=1) 
 Total runtime: 0.135 ms 
(4 rows) 
 
openGauss=# explain analyze insert into custom2 values(1,'zhang3'); 
                                          QUERY PLAN 
----------------------------------------------------------------------------------------------- 
 Insert on custom2  (cost=0.00..0.01 rows=1 width=0) (actual time=0.119..0.120 rows=1 loops=1) 
   ->  Result  (cost=0.00..0.01 rows=1 width=0) (actual time=0.001..0.002 rows=1 loops=1) 
 Total runtime: 0.207 ms 
(3 rows) 

最后删除测试表。

openGauss=# drop table custom1; 
DROP TABLE 
openGauss=#drop table custom2; 
DROP TABLE

感兴趣的同学可以自己测试更多的的场景,比如创建大宽表、update表等场景测试下。

选择建议

  • 更新频繁程度:数据如果频繁更新,选择行存表。
  • 插入频繁程度:频繁的少量插入,选择行存表。一次插入大批量数据,选择列存表。
  • 表的列数:一般情况下,如果表的字段比较多即列数多(大宽表),查询中涉及到的列不多的情况下,适合列存储。如果表的字段个数比较少,查询大部分字段,那么选择行存储比较好。
  • 查询的列数:如果每次查询时,只涉及了表的少数(<50%总列数)几个列,选择列存表。(不要问剩下的列干啥用,甲方说有用就是有用。)
  • 压缩率:列存表比行存表压缩率高。但高压缩率会消耗更多的CPU资源。

注意事项

列存由于特殊的存储方式,使用时约束比较多。比如,列存表不支持数组、不支持生成列、不支持创建全局临时表、不支持外键,支持的数据类型也会比行存要少。使用时需要查看对应的数据库文档。

  大数据 最新文章
实现Kafka至少消费一次
亚马逊云科技:还在苦于ETL?Zero ETL的时代
初探MapReduce
【SpringBoot框架篇】32.基于注解+redis实现
Elasticsearch:如何减少 Elasticsearch 集
Go redis操作
Redis面试题
专题五 Redis高并发场景
基于GBase8s和Calcite的多数据源查询
Redis——底层数据结构原理
上一篇文章      下一篇文章      查看所有文章
加:2022-06-14 22:40:05  更:2022-06-14 22:40:10 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/16 5:00:28-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码