IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 大数据 -> Spark SQL案例:分组排行榜 -> 正文阅读

[大数据]Spark SQL案例:分组排行榜

一、提出任务

  • 分组求TopN是大数据领域常见的需求,主要是根据数据的某一列进行分组,然后将分组后的每一组数据按照指定的列进行排序,最后取每一组的前N行数据。
  • 有一组学生成绩数据
张三丰 90
李孟达 85
张三丰 87
王晓云 93
李孟达 65
张三丰 76
王晓云 78
李孟达 60
张三丰 94
王晓云 97
李孟达 88
张三丰 80
王晓云 88
李孟达 82
王晓云 98
  • 同一个学生有多门成绩,现需要计算每个学生分数最高的前3个成绩,期望输出结果如下所示:
张三丰:94
张三丰:90
张三丰:87
李孟达:88
李孟达:85
李孟达:82
王晓云:98
王晓云:97
王晓云:93
  • 数据表t_grade
    在这里插入图片描述
  • 执行查询
    在这里插入图片描述
SELECT * FROM t_grade tg 
   WHERE (SELECT COUNT(*) FROM t_grade 
	           WHERE tg.name = t_grade.name 
						    AND score >= tg.score						 		
	        ) <= 3 ORDER BY name, score DESC;    
  • 预备工作:启动集群的HDFS与Spark
    在这里插入图片描述
  • 将成绩文件 - grades.txt上传到HDFS上/input目录
    在这里插入图片描述

二、涉及知识点

(一)数据集与数据帧

(二)开窗函数

1、开窗函数概述

  • Spark 1.5.x版本以后,在Spark SQL和DataFrame中引入了开窗函数,其中比较常用的开窗函数就是row_number(),该函数的作用是根据表中字段进行分组,然后根据表中的字段排序;其实就是根据其排序顺序,给组中的每条记录添加一个序号,且每组序号都是从1开始,可利用它这个特性进行分组取topN。

2、开窗函数格式

  • ROW_NUMBER() OVER (PARTITION BY field1 ORDER BY field2 DESC) rank
  • 分组求top3的SQL语句
    在这里插入图片描述

三、完成任务

(一)新建Maven项目

  • 设置项目信息(项目名、保存位置、组编号、项目编号)
    在这里插入图片描述
  • 单击【Finish】按钮
    在这里插入图片描述
  • java目录改成scala目录
    在这里插入图片描述

(二)添加相关依赖和构建插件

  • pom.xml文件里添加依赖与Maven构建插件
    在这里插入图片描述
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
         http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>net.huawei.sql</groupId>
    <artifactId>GradeTopNBySQL</artifactId>
    <version>1.0-SNAPSHOT</version>

    <dependencies>
        <dependency>
            <groupId>org.scala-lang</groupId>
            <artifactId>scala-library</artifactId>
            <version>2.11.12</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.11</artifactId>
            <version>2.1.1</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-sql_2.11</artifactId>
            <version>2.1.1</version>
        </dependency>
    </dependencies>
    <build>
        <sourceDirectory>src/main/scala</sourceDirectory>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-assembly-plugin</artifactId>
                <version>3.3.0</version>
                <configuration>
                    <descriptorRefs>
                        <descriptorRef>jar-with-dependencies</descriptorRef>
                    </descriptorRefs>
                </configuration>
                <executions>
                    <execution>
                        <id>make-assembly</id>
                        <phase>package</phase>
                        <goals>
                            <goal>single</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
            <plugin>
                <groupId>net.alchim31.maven</groupId>
                <artifactId>scala-maven-plugin</artifactId>
                <version>3.3.2</version>
                <executions>
                    <execution>
                        <id>scala-compile-first</id>
                        <phase>process-resources</phase>
                        <goals>
                            <goal>add-source</goal>
                            <goal>compile</goal>
                        </goals>
                    </execution>
                    <execution>
                        <id>scala-test-compile</id>
                        <phase>process-test-resources</phase>
                        <goals>
                            <goal>testCompile</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>
</project>

(三)创建日志属性文件

  • 在资源文件夹里创建日志属性文件 - log4j.properties
    在这里插入图片描述
log4j.rootLogger=ERROR, stdout, logfile
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n
log4j.appender.logfile=org.apache.log4j.FileAppender
log4j.appender.logfile.File=target/spark.log
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n

(四)创建分组排行榜单例对象

  • net.huawei.sql包里创建GradeTopNBySQL单例对象
    在这里插入图片描述
package net.huawei.sql

import org.apache.spark.sql.{Dataset, SparkSession}

/**
 * 功能:利用Spark SQL实现分组排行榜
 * 作者:华卫
 * 日期:2022年06月15日
 */
object GradeTopNBySQL {
  def main(args: Array[String]): Unit = {
    // 创建或得到Spark会话对象
    val spark = SparkSession.builder()
      .appName("GradeTopNBySQL")
      .master("local[*]")
      .getOrCreate()
    // 读取HDFS上的成绩文件
    val lines: Dataset[String] = spark.read.textFile("hdfs://master:9000/input/grades.txt")
    // 导入隐式转换
    import spark.implicits._
    // 创建成绩数据集
    val gradeDS: Dataset[Grade] = lines.map(
      line => { val fields = line.split(" ")
        val name = fields(0)
        val score = fields(1).toInt
        Grade(name, score)
      })
    // 将数据集转换成数据帧
    val df = gradeDS.toDF()
    // 基于数据帧创建临时表
    df.createOrReplaceTempView("t_grade")
    // 查询临时表,实现分组排行榜
    val top3 = spark.sql(
      """
        |SELECT name, score FROM
        |    (SELECT name, score, row_number() OVER (PARTITION BY name ORDER BY score DESC) rank from t_grade) t
        |    WHERE t.rank <= 3
        |""".stripMargin
    )
    // 显示分组排行榜结果
    top3.show()

    // 按指定格式输出分组排行榜
    top3.foreach(row => println(row(0) + ": " + row(1)))

    // 关闭Spark会话
    spark.close()
  }

  // 定义成绩样例类
  case class Grade(name: String, score: Int)
}

(五)本地运行程序,查看结果

  • 在控制台查看输出结果
    在这里插入图片描述

(六)交互式操作查看中间结果

1、读取成绩文件得到数据集

  • 执行命令:val lines: Dataset[String] = spark.read.textFile("hdfs://master:9000/input/grades.txt")
    在这里插入图片描述

2、定义成绩样例类

  • 执行命令:case class Grade(name: String, score: Int)
    在这里插入图片描述

3、导入隐式转换

在这里插入图片描述

4、创建成绩数据集

val gradeDS: Dataset[Grade] = lines.map(
      line => { val fields = line.split(" ")
        val name = fields(0)
        val score = fields(1).toInt
        Grade(name, score)
      })
  • 执行上述语句
    在这里插入图片描述

5、将数据集转换成数据帧

  • 执行命令:val df = gradeDS.toDF()
    在这里插入图片描述

6、基于数据帧创建临时表

  • 执行命令:df.createOrReplaceTempView("t_grade")
    在这里插入图片描述

7、查询临时表,实现分组排行榜

  val top3 = spark.sql(
      """
        |SELECT name, score FROM
        |    (SELECT name, score, row_number() OVER (PARTITION BY name ORDER BY score DESC) rank from t_grade) t
        |    WHERE t.rank <= 3
        |""".stripMargin
    )
  • 执行上述语句
    在这里插入图片描述

8、显示分组排行榜结果

  • 执行命令:top3.show()
    在这里插入图片描述

四、可能会出现的问题

  • MySQL支持这样的子查询
    在这里插入图片描述
  • 但是Spark SQL不支持,会抛出异常AnalysisException: Correlated column is not allowed in a non-equality predicate
    在这里插入图片描述
  大数据 最新文章
实现Kafka至少消费一次
亚马逊云科技:还在苦于ETL?Zero ETL的时代
初探MapReduce
【SpringBoot框架篇】32.基于注解+redis实现
Elasticsearch:如何减少 Elasticsearch 集
Go redis操作
Redis面试题
专题五 Redis高并发场景
基于GBase8s和Calcite的多数据源查询
Redis——底层数据结构原理
上一篇文章      下一篇文章      查看所有文章
加:2022-06-18 23:28:02  更:2022-06-18 23:28:18 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/23 16:45:56-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码