IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 大数据 -> TDengine vs InfluxDB 哪个更易用上手更快 -> 正文阅读

[大数据]TDengine vs InfluxDB 哪个更易用上手更快

TDengine 和 InfluxDB 都是时序数据库(Time Series Database)。前者是新兴的黑马,后者是老牌的龙头,这两个哪个更易用,上手更快呢?

下面从最基础的数据写入和查询方面比较一下,由于只对 Python 比较熟悉,就从 Python 出发,通过两者提供的示例代码进行一下对比。

1. InfluxDB

官网文档地址:https://docs.influxdata.com/influxdb/v2.2/api-guide/client-libraries/python/

1.1. 安装连接器

pip install influxdb-client

1.2. 复制示例代码

InfluxDB 提供的代码里面没有提供创建 org 和 bucket 的操作,
相关操作可以参考 InfluxDB 客户端基础操作

import influxdb_client
from influxdb_client.client.write_api import SYNCHRONOUS

bucket = "db01"
org = "test"
token = "xxxxxxxxxxxxxxx"
# Store the URL of your InfluxDB instance
url="http://192.168.0.111:8086"

client = influxdb_client.InfluxDBClient(
    url=url,
    token=token,
    org=org
)

write_api = client.write_api(write_options=SYNCHRONOUS)

p = influxdb_client.Point("my_measurement").tag("location", "Prague").field("temperature", 25.3)
write_api.write(bucket=bucket, org=org, record=p)

query_api = client.query_api()
query = ' from(bucket:"db01")\
|> range(start: -10m)\
|> filter(fn:(r) => r._measurement == "my_measurement")\
|> filter(fn: (r) => r.location == "Prague")\
|> filter(fn:(r) => r._field == "temperature" )'
result = query_api.query(org=org, query=query)
results = []
for table in result:
    for record in table.records:
        results.append((record.get_field(), record.get_value()))

print(results)

PS:直接复制官方的代码运行时报错:

  File "influx.py", line 23
    query = ` from(bucket:"my-bucket")\
            ^
SyntaxError: invalid syntax

需要将代码中的反引号修改为单引号才能成功。

1.3. 运行代码

root@cl1:~/influx# python3 influx.py 
[('temperature', 25.3)]

2. TDengine

TDengine 的安装可参考 TDengine学习笔记-集群安装
官网文档:https://docs.taosdata.com/2.4/reference/connector/python

2.1. 安装连接器

pip3 install taospy

2.2. 复制示例代码

import taos

conn: taos.TaosConnection = taos.connect(host="192.168.0.11",
                                         user="root",
                                         password="taosdata",
                                         #database="test",
                                         port=6030,
                                         config="/etc/taos",  
                                         timezone="Asia/Shanghai") 

server_version = conn.server_info
print("server_version", server_version)
client_version = conn.client_info
print("client_version", client_version)  # 2.4.0.16


conn.execute("DROP DATABASE IF EXISTS test")
conn.execute("CREATE DATABASE test")
conn.select_db("test")
conn.execute("CREATE STABLE weather(ts TIMESTAMP, temperature FLOAT) TAGS (location INT)")
affected_row: int = conn.execute("INSERT INTO t1 USING weather TAGS(1) VALUES (now, 23.5) (now+1m, 23.5) (now+2m 24.4)")
print("affected_row", affected_row)

result: taos.TaosResult = conn.query("SELECT * from weather")

fields: taos.field.TaosFields = result.fields
for field in fields:
    print(field)  # {name: ts, type: 9, bytes: 8}


data = result.fetch_all()
print(data)

PS:和 InfluxDB 一样,直接运行代码也会报错

connect failed, reason: Invalid database name.

/usr/lib/python3/dist-packages/requests/__init__.py:89: RequestsDependencyWarning: urllib3 (1.26.9) or chardet (3.0.4) doesn't match a supported version!
  warnings.warn("urllib3 ({}) or chardet ({}) doesn't match a supported "
Traceback (most recent call last):
  File "tdengine.py", line 3, in <module>
    conn: taos.TaosConnection = taos.connect(host="192.168.0.11",
  File "/usr/local/lib/python3.8/dist-packages/taos/__init__.py", line 63, in connect
    return TaosConnection(*args, **kwargs)
  File "/usr/local/lib/python3.8/dist-packages/taos/connection.py", line 24, in __init__
    self._conn = self._chandle.connect(self._host, self._user, self._password, self._database, self._port)
  File "/usr/local/lib/python3.8/dist-packages/taos/cinterface.py", line 993, in connect
    return taos_connect(host, user, password, db, port)
  File "/usr/local/lib/python3.8/dist-packages/taos/cinterface.py", line 213, in taos_connect
    raise ConnectionError("connect to TDengine failed")

问题在于连接串里面指定了数据库 test,但是此时数据库还没有创建,因此就会报错。
将 database = “test” 注释即可运行。

2.3. 运行代码

root@cl1:~/tdengine# python3 tdengine.py 
server_version 2.4.0.26
client_version 2.4.0.24
affected_row 3
{name: ts, type: 9, bytes: 8}
{name: temperature, type: 6, bytes: 4}
{name: location, type: 4, bytes: 4}
[(datetime.datetime(2022, 6, 15, 10, 45, 50, 787000, tzinfo=<DstTzInfo 'Asia/Shanghai' CST+8:00:00 STD>), 23.5, 1), (datetime.datetime(2022, 6, 15, 10, 46, 50, 787000, tzinfo=<DstTzInfo 'Asia/Shanghai' CST+8:00:00 STD>), 23.5, 1), (datetime.datetime(2022, 6, 15, 10, 47, 50, 787000, tzinfo=<DstTzInfo 'Asia/Shanghai' CST+8:00:00 STD>), 24.399999618530273, 1)]

3. 结论

首先,两个产品都提供了示例代码,能够实现简单的数据写入和查询。

其次,直接复制代码都出现了问题,区别在于 InfluxDB 的问题是简单的语法问题,可能是由于某些插件版本问题造成的,而 TDengine 就是逻辑上的问题了,如果对产品不熟悉,可能要花点时间才能定位到。

再次,个人感觉 InfluxDB 的查询语法还是不如 TDengine 的 SQL 看起来简单。

最后,如果只是从数据写入和查询的简单功能来看,还无法判断两者哪个更易上手些。

  大数据 最新文章
实现Kafka至少消费一次
亚马逊云科技:还在苦于ETL?Zero ETL的时代
初探MapReduce
【SpringBoot框架篇】32.基于注解+redis实现
Elasticsearch:如何减少 Elasticsearch 集
Go redis操作
Redis面试题
专题五 Redis高并发场景
基于GBase8s和Calcite的多数据源查询
Redis——底层数据结构原理
上一篇文章      下一篇文章      查看所有文章
加:2022-06-18 23:28:02  更:2022-06-18 23:28:31 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/23 16:47:51-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码