IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 大数据 -> Python 读取千万级数据自动写入 MySQL 数据库 -> 正文阅读

[大数据]Python 读取千万级数据自动写入 MySQL 数据库

Python 读取数据自动写入 MySQL 数据库,这个需求在工作中是非常普遍的,主要涉及到 python 操作数据库,读写更新等,数据库可能是 mongodb、 es,他们的处理思路都是相似的,只需要将操作数据库的语法更换即可。本篇文章会给大家系统的分享千万级数据如何写入到 mysql,分为两个场景,两种方式。

场景一:数据不需要频繁的写入mysql

使用 navicat 工具的导入向导功能。支持多种文件格式,可以根据文件的字段自动建表,也可以在已有表中插入数据,非常快捷方便。

场景二:数据是增量的,需要自动化并频繁写入mysql

测试数据:csv 格式 ,大约 1200万行

import?pandas?as?pd
data?=?pd.read_csv('./tianchi_mobile_recommend_train_user.csv')
data.shape

打印结果

方式一:

  • python ? pymysql 库

  • 安装 pymysql 命令

pip?install?pymysql

代码实现

import?pymysql

#?数据库连接信息
conn?=?pymysql.connect(
???????host='127.0.0.1',
???????user='root',
???????passwd='wangyuqing',
???????db='test01',?
???????port?=?3306,
???????charset="utf8")

#?分块处理
big_size?=?100000
#?分块遍历写入到?mysql????
with?pd.read_csv('./tianchi_mobile_recommend_train_user.csv',chunksize=big_size)?as?reader:

????for?df?in?reader:

????????datas?=?[]
????????print('处理:',len(df))
#?????????print(df)
????????for?i?,j?in?df.iterrows():
????????????data?=?(j['user_id'],j['item_id'],j['behavior_type'],
????????????????????j['item_category'],j['time'])
????????????datas.append(data)
????????_values?=?",".join(['%s',?]?*?5)
????????sql?=?"""insert?into?users(user_id,item_id,behavior_type
????????,item_category,time)?values(%s)"""?%?_values
????????cursor?=?conn.cursor()
????????cursor.executemany(sql,datas)
????????conn.commit()
?#?关闭服务??????
conn.close()
cursor.close()
print('存入成功!')

方式二:

  • pandas ? sqlalchemy:pandas需要引入sqlalchemy来支持sql,在sqlalchemy的支持下,它可以实现所有常见数据库类型的查询、更新等操作。

代码实现

from?sqlalchemy?import?create_engine
engine?=?create_engine('mysql+pymysql://root:wangyuqing@localhost:3306/test01')
data?=?pd.read_csv('./tianchi_mobile_recommend_train_user.csv')
data.to_sql('user02',engine,chunksize=100000,index=None)
print('存入成功!')

python学习

如果你想学习Python,但是找不到学习路径和资源
欢迎加入新的交流【君羊】:905229245
一起探讨编程知识,成为大神,群里还有软件安装包,实战案例、学习资料

总结

pymysql 方法用时12分47秒,耗时还是比较长的,代码量大,而 pandas 仅需五行代码就实现了这个需求,只用了4分钟左右。

最后补充下,方式一需要提前建表,方式二则不需要。

所以推荐大家使用第二种方式,既方便又效率高。如果还觉得速度慢的小伙伴,可以考虑加入多进程、多线程。

最全的三种将数据存入到 MySQL 数据库方法:

  • 直接存,利用 navicat 的导入向导功能

  • Python pymysql

  • Pandas sqlalchemy

  大数据 最新文章
实现Kafka至少消费一次
亚马逊云科技:还在苦于ETL?Zero ETL的时代
初探MapReduce
【SpringBoot框架篇】32.基于注解+redis实现
Elasticsearch:如何减少 Elasticsearch 集
Go redis操作
Redis面试题
专题五 Redis高并发场景
基于GBase8s和Calcite的多数据源查询
Redis——底层数据结构原理
上一篇文章      下一篇文章      查看所有文章
加:2022-06-23 00:55:58  更:2022-06-23 00:56:21 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/16 2:01:49-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码