IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 大数据 -> 从 jsonpath 和 xpath 到 SPL -> 正文阅读

[大数据]从 jsonpath 和 xpath 到 SPL

????????XML和Json不仅是结构化文本,而且擅长表示多层数据,可承载足够通用和足够丰富的信息,因此常被用于各种数据交换和信息传递事务,比如WebService/Restful,微服务等。但多层数据要比传统的二维表结构复杂,取数后再处理的难度也大。

????????早期,没有专业的json/XML的后处理技术,JAVA开发者通常要采取硬写代码或入库再算的方式。硬编码计算能力差,代码量大,开发效率很低。入库虽然解决了部分计算能力,但步骤多,延迟大,额外制造了JAVA与数据库的紧耦合,架构性很差,而且数据库只擅长计算二维表,处理多层结构化数据的能力并不强。后来,专业的json/XML后处理技术开始出现,才使Java中做这些运算处理的效率有了较大的提升,JsonPath/XPath是其中的优秀者。

JsonPath和XPath具有突破性的计算能力

????????XPath是广泛使用的XML处理语言,内置于XOM/Xerces-J/Jdom/Dom4J等函数库。JsonPath仿照XPath的语法,实现了类似的功能,且有自己的函数库,目前是广泛使用的Json处理语言。比起以前硬编码的方式,XPath/JsonPath代码简短得多,具有突破性的计算能力。

????????比如,用arronlong HTTP函数库从WebService取XML字符串,使用Dom4J函数库将XML字符串解析为Document类型,使用Dom4J内置的XPath语法进行条件查询:

String path= "http://.../emp_orders.xml";
String XMLStr= com.arronlong.httpclientutil.HttpClientUtil.get(com.arronlong.httpclientutil.common.HttpConfig.custom().url(path));
Document doc = DocumentHelper.parseText(XMLStr);
List<Node> list=doc.selectNodes("/xml/row/Orders[Amount>1000 and Amount<=3000 and contains(Client,'bro')]")

????????类似地,用JsonPath进行条件查询:

String path= "http://.../emp_orders.json";
String JsonStr= com.arronlong.httpclientutil.HttpClientUtil.get(com.arronlong.httpclientutil.common.HttpConfig.custom().url(path));
Object document = Configuration.defaultConfiguration().jsonProvider().parse(JsonStr);
ArrayList l=JsonPath.read(document, "$[*].Orders[?(@.Amount>1000 && @.Amount<2000 && @.Client =~ /.*?business.*?/i )]");

????????JsonPath与XPath用法类似,语法相通,计算能力差别不大,下面以JsonPath为主进行说明。JsonPath/XPath对条件查询的支持比较完整,包括关系运算符,如大于、小于等于;逻辑运算符,如与、或、非;字符串正则表达式,如~ /.?business.?/i;字符串函数,如模糊匹配contains。此外,JsonPath/XPath还支持在条件查询中使用数学运算符(函数),如+ - *、div;位置函数,如position、last;日期函数,如year-from-date、timezone-from-time。

????????需要特别说明的是,JsonPath/XPath可以灵活表达条件查询的层级范围,包括绝对位置、相对位置、父节点、子节点、属性、元素等,这是多层数据处理语言有别于二维数据处理语言(SQL)之处,如代码中的$[*].Orders和/xml/row/Orders。

????????除了条件查询,JsonPath/XPath还支持聚合计算,比如用JsonPath求和:

Double d=JsonPath.read(document, "$.sum($[*].Orders[*].Amount)");

????????JsonPath/XPath还支持平均、最大、最小、计数等聚合函数。

????????从这些例子可以看出来,JsonPath/XPath的语法直观易懂,可以用较短的代码实现条件查询和聚合计算,可以方便地访问多层结构,比硬编码方便多了。

JsonPath和XPath计算能力仍然不足

????????比起直接用Java编码,JsonPath和XPath的计算能力的确是突破性的,但要进行日常计算甚至是基础计算,JsonPath和XPath的能力是严重不足的,远不如SQL。事实上,JsonPath/XPath只支持条件查询和聚合这两种最基本的计算,其他计算都要用复杂的编码辅助完成。

????????比如,用JsonPath进行分组汇总:

ArrayList orders=JsonPath.read(document, "$[*].Orders[*]");
Comparator<HashMap> comparator = new Comparator<HashMap>() {
    public int compare(HashMap record1, HashMap record2) {
        if (!record1.get("Client").equals(record2.get("Client"))) {
            return ((String)record1.get("Client")).compareTo((String)record2.get("Client"));
        } else {
            return ((Integer)record1.get("OrderID")).compareTo((Integer)record2.get("OrderID"));
        }
    }
};
Collections.sort(orders, comparator);
ArrayList<HashMap> result=new ArrayList<HashMap>();
HashMap currentGroup=(HashMap)orders.get(0);
double sumValue=(double) currentGroup.get("Amount");
for(int i = 1;i < orders.size(); i ++){
    HashMap thisRecord=(HashMap)orders.get(i);
    if(thisRecord.get("Client").equals(currentGroup.get("Client"))){
        sumValue=sumValue+(double)thisRecord.get("Amount");
    }else{
        HashMap newGroup=new HashMap();
        newGroup.put(currentGroup.get("Client"),sumValue);
        result.add(newGroup);
        currentGroup=thisRecord;
        sumValue=(double) currentGroup.get("Amount");
    }
}

????????JsonPath/XPath不支持分组汇总,只能自行编码完成大部分计算,这就要求程序员控制所有细节,代码冗长且容易出错。如果换一个分组字段或汇总字段,则要修改多处代码,如果对多个字段分组或汇总,代码还需大量修改,很难写出通用代码。

????????JsonPath/XPath的计算能力严重不足,不支持大部分基础计算,除了分组汇总,还包括:重命名、排序、去重、关联计算、集合计算、笛卡尔积、归并计算、窗口函数、有序计算等。JsonPath/XPath也不支持将大计算目标分解为基础计算的机制,比如子查询、多步骤计算等,因此难以进行较复杂的计算。

????????除了计算能力之外,Jsonpath/XPath还有个问题,就是没有自己的HTTP接口,必须自行编码或利用第三方HTTP函数库,比如JourWon、Arronlong,前面的例子就使用了Arronlong函数库。除了基础的HTTP之外,MongoDB或elasticSearch也可以返回多层数据,每种数据源的接口协议都不同,Jsonpath/XPath没有提供相关的接口,只能自己写或再引入第三方类库,这导致架构复杂、不稳定因素增大、开发效率降低。

????????JsonPath/XPath的计算能力不足,导致开发效率低下。要想提高开发效率,必须使用计算能力足够的json/XML处理技术。

???????? SPL是更优的选择

SPL具有足够的计算能力

????????esProc SPL是JVM下开源的结构化数据/多层数据处理语言,内置专业的多层数据对象,提供了丰富的计算函数、字符串函数、日期函数,具有不亚于SQL的计算能力,可以提高WebService/Restful后处理的开发效率。

????????SPL内置专业的多层结构化数据对象,为计算功能提供了有力的底层支撑

????????比如,从文件读取XML字符串,解析为SPL序表:

A
1=file(“d:\xml\emp_orders.xml”).read()
2=xml(A1,“xml/row”)

????????点击A2格可以看到多层序表的结构,其中,EId、State等字段存储简单数据类型,Orders字段存储记录集合(二维表)。点击Orders中的某一行,可以展开观察数据:

1png

????????SPL序表是专业的数据对象,可以表示结构任意复杂的多层数据,下面再看一个例子:

2png
????????序表的专业性还体现在,可以表示任意来源的二维或多层数据,包括但不限于XML\Json,文件\网络服务。比如,从文件读取Json字符串(与前面的XML同构),解析为SPL序表:

A
1=file(“d:\xml\emp_orders.json”).read()
2=json(A1)

????????这里的序表和前面来自XML的序表没有区别,后续的计算代码完全一样,下面以Json为主进行说明。

????????SPL内置丰富的计算函数,基础计算一句完成

????????比如,同样对多层Json进行条件查询:

A
2…//省略取数解析
3=A2.conj(Orders)
4=A3.select(Amount>1000 && Amount<=2000 && like@c(Client,“business”))

????????可以看到,SPL对条件查询的支持很完整,覆盖了JsonPath/XPath的功能,包括关系运算符、逻辑运算符、正则表达式和字符串函数,如模糊匹配like。此外,SPL还支持在条件查询中使用数学运算符(函数)、位置函数、日期函数。SPL可以灵活地访问不同层级,且代码更简单,如代码中的A2.conj(Orders)。

????????SPL实现各类聚合计算也很简单,比如求和:=A3.sum(Amount)

????????SPL支持丰富的基础计算,具有不亚于SQL的计算能力,比如JsonPath/XPath必须硬编码实现的分组汇总,SPL一句就行:

=A2.conj(Orders).groups(Client;sum(Amount))

更多例子:

AB
1….
3=A2.groups(State,Gender;avg(Salary),count(1))多字段分组汇总
4=A1.new(Name,Gender,Dept,Orders.OrderID,Orders.Client,Orders.Client,Orders.SellerId,Orders.Amount,Orders.OrderDate)关联
5=A1.sort(Salary)排序
6=A1.id(State)去重
7=A2.top(-3;Amount)topN
8=A2.groups(Client;top(3,Amount))组内TopN(窗口函数)

????????SPL提供了大量日期和字符串函数,开发效率更高

????????SPL支持大量日期函数和字符串函数,在数量和功能上远远超过JsonPath/XPath甚至SQL,同样的运算代码量更短。比如:

????????时间类函数,日期增减:elapse(“2020-02-27”,5) //返回2020-03-03

????????星期几:day@w(“2020-02-27”) //返回5,即星期4

????????N个工作日之后的日期:workday(date(“2022-01-01”),25) //返回2022-02-04

????????字符串类函数,判断是否全为数字:isdigit(“12345”) //返回true

????????取子串前面的字符串:substr@l(“abCDcdef”,“cd”) //返回abCD

????????按竖线拆成字符串数组:“aa|bb|cc”.split(“|”) //返回[“aa”,“bb”,“cc”]

????????SPL还支持年份增减、求年中第几天、求季度、按正则表达式拆分字符串、拆出SQL的where或select部分、拆出单词、按标记拆HTML等功能。

SPL支持更优的应用架构

????????SPL支持脚本外置和热切换,可用一致的方法计算多种数据源,有助于实现更优的应用架构。

????????SPL提供了JDBC接口,支持脚本外置和热切换

????????比如,将前面的SPL代码存为脚本文件,在JAVA中以存储过程的形式调用文件名:

Class.forName("com.esproc.jdbc.InternalDriver");
Connection connection =DriverManager.getConnection("jdbc:esproc:local://");
Statement statement = connection.createStatement();
ResultSet result = statement.executeQuery("call groupBy()");

????????SPL脚本文件外置于JAVA,使计算代码和应用程序分离,可有效降低系统耦合性。

????????SPL是解释型语言,修改后不必重启JAVA应用就可以直接执行,从而实现代码热切换,可保障系统稳定,降低维护难度。

????????SPL支持多种数据源,可用一致的方法计算多层数据

????????除了文件,SPL也支持来自WebSerivce和Restful的多层文件。比如,从WebService读取多层XML,进行条件查询:

A
1=ws_client(“http://127.0.0.1:6868/ws/RQWebService.asmx?wsdl”)
2=ws_call(A1,“RQWebService”:“RQWebServiceSoap”:“getEmp_orders”)
3=A2.conj(Orders)
4=A3.select(Amount>1000 && Amount<=2000 && like@c(Client,“business”))

????????类似地,从Restful取多层Json,进行同样的条件查询:

A
1=httpfile(“http://127.0.0.1:6868/restful/emp_orders”).read()
2=json(A1)
3=A2.conj(Orders)
4=A3.select(Amount>1000 && Amount<=2000 && like@c(Client,“business”))

????????除了WebService和Restful,很多特殊数据源也是多层数据,常见的比如MongoDB、ElasticSearch、SalesForce。SPL支持多种数据源,可直接从这些数据源取数并计算。

????????比如,从MongoDB取多层Json,进行条件查询:

A
1=mongo_open(“mongodb://127.0.0.1:27017/mongo”)
2=mongo_shell@x(A1,“data.find()”)
3=A2.conj(Orders)
4=A3.select(Amount>1000 && Amount<=2000 && like@c(Client,“business”))

????????除了多层数据,SPL也支持数据库,txt\csv\xls等文件, Hadoop、redis、Kafka、Cassandra等NoSQL。

????????虽然数据源不同,但在SPL中的数据类型都是序表,因此可以用一致的方法计算多层数据。一致的计算代码使SPL具有高度的可移植性。

SPL计算能力强大,可简化复杂的业务逻辑

????????SPL内置更方便的函数语法,适合计算结构复杂的多层数据,可简化复杂的业务逻辑,计算能力超过SQL。

????????SPL内置更方便的函数语法,提供了强大的计算能力

????????SPL提供了特有的函数选项语法,功能相似的函数可以共用一个函数名,只用函数选项区分差别。比如select函数的基本功能是过滤,如果只过滤出符合条件的第1条记录,可使用选项@1:

Orders.select@1(Amount&gt;1000)

????????数据量较大时,用并行计算提高性能,可使用选项@m:

Orders.select@m(Amount&gt;1000)

对排序过的数据,用二分法进行快速过滤,可用@b:

Orders.select@b(Amount&gt;1000)

函数选项还可以组合搭配,比如:

Orders.select@1b(Amount&gt;1000)

????????结构化运算函数的参数常常很复杂,比如SQL就需要用各种关键字把一条语句的参数分隔成多个组,但这会动用很多关键字,也使语句结构不统一。

????????SPL支持层次参数,通过分号、逗号、冒号自高而低将参数分为三层,用通用的方式简化复杂参数的表达:

join(Orders:o,SellerId ; Employees:e,EId)

????????SPL表达能力强,适合计算结构复杂的多层数据

????????比如:Restful返回多层Json,包含多个子文档,结构较复杂,部分数据如下:

[
 {
 "race": {
 "raceId":"1.33.1141109.2",
 "meetingId":"1.33.1141109"
 },
 ...
 "numberOfRunners": 2,
 "runners": [
 { "horseId":"1.00387464",
 "trainer": {
 "trainerId":"1.00034060"
 },
 "ownerColours":"Maroon,pink,dark blue."
 },
 { "horseId":"1.00373620",
 "trainer": {
 "trainerId":"1.00010997"
 },
 "ownerColours":"Black,Maroon,green,pink."
 }
 ]
 },
...
]

????????现在要对不同的层级进行分组汇总(对trainerId分组,统计每组中 ownerColours的成员个数),一般的方法难以实现,SPL就简单多了:

A
1
2=A1(1).runners
3=A2.groups(trainer.trainerId; ownerColours.array().count():times)

????????SPL计算能力强,可简化复杂的业务逻辑

????????SPL支持分步计算、有序计算、分组后计算等逻辑较复杂的计算,很多SQL/存储过程难以实现的计算,用SPL解决起来就很轻松。比如,找出销售额累计占到一半的前n个大客户,并按销售额从大到小排序:

AB
1/取数据
2=A1.sort(amount:-1)/销售额逆序排序
3=A2.cumulate(amount)/计算累计序列
4=A3.m(-1)/2/最后的累计即总额
5=A3.pselect(~>=A4)/超过一半的位置
6=A2(to(A5))/按位置取值

????????从编码到JsonPath/XPath,json/XML的计算处理技术从无到有。从JsonPath/XPath到SPL,多层数据的计算能力由弱到强。SPL内置专业的数据对象、丰富的计算函数、字符串函数、日期函数,具有足够的计算能力。SPL支持脚本外置和热切换,可用一致的方法计算多种数据源,有助于实现更优的应用架构。SPL内置更方便的函数语法,适合计算结构复杂的多层数据,可简化复杂的业务逻辑。

SPL资料

欢迎对SPL有兴趣的加小助手(VX号:SPL-helper),进SPL技术交流群

  大数据 最新文章
实现Kafka至少消费一次
亚马逊云科技:还在苦于ETL?Zero ETL的时代
初探MapReduce
【SpringBoot框架篇】32.基于注解+redis实现
Elasticsearch:如何减少 Elasticsearch 集
Go redis操作
Redis面试题
专题五 Redis高并发场景
基于GBase8s和Calcite的多数据源查询
Redis——底层数据结构原理
上一篇文章      下一篇文章      查看所有文章
加:2022-06-23 00:55:58  更:2022-06-23 00:57:45 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/16 1:49:41-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码