IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 大数据 -> 【Spark】Spark SQL 字段血缘如何实现 -> 正文阅读

[大数据]【Spark】Spark SQL 字段血缘如何实现

0、背景

字段血缘是在表处理的过程中将字段的处理过程保留下来。为什么会需要字段血缘呢?

有了字段间的血缘关系,便可以知道数据的来源去处,以及字段之间的转换关系,这样对数据的质量,治理有很大的帮助。

Spark SQL 相对于 Hive 来说通常情况下效率会比较高,对于运行时间、资源的使用上面等都会有较大的收益。

平台计划将 Hive 任务迁移到 Spark SQL 上,同时也需要实现字段血缘的功能。Hive的数据血缘直接Atlas支持,Spark的字段血缘如何实现呢?

一、SparkSQL扩展

Spark 是支持扩展的:允许用户对 Spark SQL 的 SQL 解析、逻辑计划的分析和检查、逻辑计划的优化、物理计划的形成等进行扩展,且对 Spark 的源码没有改动,代价也比较小。

1.1 Spark可扩展的内容

SparkSessionExtensions是比较重要的一个类,其中定义了注入规则的方法,现在支持以下内容:

  • 【Analyzer Rules】逻辑计划分析规则

  • 【Check Analysis Rules】逻辑计划检查规则

  • 【Optimizer Rules.】 逻辑计划优化规则

  • 【Planning Strategies】形成物理计划的策略

  • 【Customized Parser】自定义的sql解析器

  • 【(External) Catalog listeners? catalog】监听器

在以上六种可以用户自定义的地方,我们选择了【Check Analysis Rules】。因为该检查规则在方法调用的时候是不需要有返回值的,也就意味着不需要对当前遍历的逻辑计划树进行修改,这正是我们需要的。

而【Analyzer Rules】、【Optimizer Rules】则需要对当前的逻辑计划进行修改,使得我们难以迭代整个树,难以得到我们想要的结果。

1.2 实现自己的扩展

class ExtralSparkExtension extends (SparkSessionExtensions => Unit) {
  override def apply(spark: SparkSessionExtensions): Unit = {

    //字段血缘
    spark.injectCheckRule(FieldLineageCheckRuleV3)

    //sql解析器
    spark.injectParser { case (_, parser) => new ExtraSparkParser(parser) }

  }
}

上面按照这种方式实现扩展,并在 apply 方法中把自己需要的规则注入到SparkSessionExtensions 即可,除了以上四种可以注入的以外还有其他的规则。

要让 ExtralSparkExtension 起到作用的话我们需要在spark-default.conf下配置spark.sql.extensions=org.apache.spark.sql.hive.ExtralSparkExtension,在启动 Spark 任务的时候即可生效。

注意到我们也实现了一个自定义的SQL解析器,其实该解析器并没有做太多的事情。只是在判断如果该语句包含insert的时候就将 SQLText(SQL语句)设置到一个为FIELD_LINE_AGE_SQL,之所以将SQLText放到FIELD_LINE_AGE_SQL里面。因为在 DheckRule 里面是拿不到SparkPlan的我们需要对SQL再次解析拿到 SprkPlan,而FieldLineageCheckRuleV3的实现也特别简单,重要的在另一个线程实现里面。

这里我们只关注了insert语句,因为插入语句里面有从某些个表里面输入然后写入到某个表。

class ExtraSparkParser(delegate: ParserInterface) extends ParserInterface with Logging{

  override def parsePlan(sqlText: String): LogicalPlan = {
    val lineAgeEnabled = SparkSession.getActiveSession
      .get.conf.getOption("spark.sql.xxx-xxx-xxx.enable").getOrElse("false").toBoolean
    logDebug(s"SqlText: $sqlText")
    if(sqlText.toLowerCase().contains("insert")){
      if(lineAgeEnabled){
        if(FIELD_LINE_AGE_SQL_COULD_SET.get()){
          //线程本地变量在这里
          FIELD_LINE_AGE_SQL.set(sqlText)
        }
        FIELD_LINE_AGE_SQL_COULD_SET.remove()
      }
    }
    delegate.parsePlan(sqlText)
  }
  //调用原始的sqlparser
  override def parseExpression(sqlText: String): Expression = {
    delegate.parseExpression(sqlText)
  }
  //调用原始的sqlparser
  override def parseTableIdentifier(sqlText: String): TableIdentifier = {
    delegate.parseTableIdentifier(sqlText)
  }
  //调用原始的sqlparser
  override def parseFunctionIdentifier(sqlText: String): FunctionIdentifier = {
    delegate.parseFunctionIdentifier(sqlText)
  }
  //调用原始的sqlparser
  override def parseTableSchema(sqlText: String): StructType = {
    delegate.parseTableSchema(sqlText)
  }
  //调用原始的sqlparser
  override def parseDataType(sqlText: String): DataType = {
    delegate.parseDataType(sqlText)
  }
}

1.3 扩展的规则类


case class FieldLineageCheckRuleV3(sparkSession:SparkSession) extends (LogicalPlan=>Unit ) {

  val executor: ThreadPoolExecutor =
    ThreadUtils.newDaemonCachedThreadPool("spark-field-line-age-collector",3,6)

  override def apply(plan: LogicalPlan): Unit = {
    val sql = FIELD_LINE_AGE_SQL.get
    FIELD_LINE_AGE_SQL.remove()
    if(sql != null){
      //这里我们拿到sql然后启动一个线程做剩余的解析任务
      val task = new FieldLineageRunnableV3(sparkSession,sql)
      executor.execute(task)
    }

  }
}

很简单,我们只是拿到了 SQL 然后便启动了一个线程去得到 SparkPlan,实际逻辑在

FieldLineageRunnableV3。

1.4?具体的实现方法

1.4.1?得到 SparkPlan

我们在 run 方法中得到 SparkPlan:


override def run(): Unit = {
  val parser = sparkSession.sessionState.sqlParser
  val analyzer = sparkSession.sessionState.analyzer
  val optimizer = sparkSession.sessionState.optimizer
  val planner = sparkSession.sessionState.planner
      ............
  val newPlan = parser.parsePlan(sql)
  PASS_TABLE_AUTH.set(true)
  val analyzedPlan = analyzer.executeAndCheck(newPlan)

  val optimizerPlan = optimizer.execute(analyzedPlan)
  //得到sparkPlan
  val sparkPlan = planner.plan(optimizerPlan).next()
  ...............
if(targetTable != null){
  val levelProject = new ArrayBuffer[ArrayBuffer[NameExpressionHolder]]()
  val predicates = new ArrayBuffer[(String,ArrayBuffer[NameExpressionHolder])]()
  //projection
  projectionLineAge(levelProject, sparkPlan.child)
  //predication
  predicationLineAge(predicates, sparkPlan.child)
  ...............

为什么要使用 SparkPlan 呢?当初我们考虑的时候,物理计划拿取字段关系的时候是比较准的,且链路比较短也更直接。

在这里补充一下 Spark SQL 解析的过程如下:

经过SqlParser后会得到逻辑计划,此时表名、函数等都没有解析,还不能执行;经过Analyzer会分析一些绑定信息,例如表验证、字段信息、函数信息;经过Optimizer 后逻辑计划会根据既定规则被优化,这里的规则是RBO,当然 Spark 还支持CBO的优化;经过SparkPlanner后就成了可执行的物理计划。

我们看一个逻辑计划与物理计划对比的例子:

一个 SQL 语句:

select item_id,TYPE,v_value,imei from t1
union all
select item_id,TYPE,v_value,imei from t2
union all
select item_id,TYPE,v_value,imei from t3

逻辑计划:

物理计划:

显然简化了很多。

得到 SparkPlan 后,我们就可以根据不同的SparkPlan节点做迭代处理。

我们将字段血缘分为两种类型:projection(select查询字段)、predication(wehre查询条件)。

这两种是一种点对点的关系,即从原始表的字段生成目标表的字段的对应关系。

想象一个查询是一棵树,那么迭代关系会如下从树的顶端开始迭代,直到树的叶子节点,叶子节点即为原始表:

那么我们迭代查询的结果应该为

id ->tab1.id ,?

name->tab1.name,tabb2.name,

age→tabb2.age。

注意到有该变量

?val levelProject = new ArrayBuffer

[ArrayBuffer[NameExpressionHolder]](),通过projecti-onLineAge 迭代后 levelProject 存储了顶层id,name,age对应的(tab1.id),(tab1.name,tabb2.name),(tabb2.age)。

当然也不是简单的递归迭代,还需要考虑特殊情况例如:Join、ExplandExec、Aggregate、Explode、GenerateExec等都需要特殊考虑。

例子及效果:

SQL:

with A as (select id,name,age from tab1 where id > 100 ) ,
C as (select id,name,max(age) from A group by A.id,A.name) ,
B as (select id,name,age from tabb2 where age > 28)
insert into tab3
   select C.id,concat(C.name,B.name) as name, B.age from
     B,C where C.id = B.id

效果:


{
  "edges": [
    {
      "sources": [
        3
      ],
      "targets": [
        0
      ],
      "expression": "id",
      "edgeType": "PROJECTION"
    },
    {
      "sources": [
        4,
        7
      ],
      "targets": [
        1
      ],
      "expression": "name",
      "edgeType": "PROJECTION"
    },
    {
      "sources": [
        5
      ],
      "targets": [
        2
      ],
      "expression": "age",
      "edgeType": "PROJECTION"
    },
    {
      "sources": [
        6,
        3
      ],
      "targets": [
        0,
        1,
        2
      ],
      "expression": "INNER",
      "edgeType": "PREDICATE"
    },
    {
      "sources": [
        6,
        5
      ],
      "targets": [
        0,
        1,
        2
      ],
      "expression": "((((default.tabb2.`age` IS NOT NULL) AND (CAST(default.tabb2.`age` AS INT) > 28)) AND (B.`id` > 100)) AND (B.`id` IS NOT NULL))",
      "edgeType": "PREDICATE"
    },
    {
      "sources": [
        3
      ],
      "targets": [
        0,
        1,
        2
      ],
      "expression": "((default.tab1.`id` IS NOT NULL) AND (default.tab1.`id` > 100))",
      "edgeType": "PREDICATE"
    }
  ],
  "vertices": [
    {
      "id": 0,
      "vertexType": "COLUMN",
      "vertexId": "default.tab3.id"
    },
    {
      "id": 1,
      "vertexType": "COLUMN",
      "vertexId": "default.tab3.name"
    },
    {
      "id": 2,
      "vertexType": "COLUMN",
      "vertexId": "default.tab3.age"
    },
    {
      "id": 3,
      "vertexType": "COLUMN",
      "vertexId": "default.tab1.id"
    },
    {
      "id": 4,
      "vertexType": "COLUMN",
      "vertexId": "default.tab1.name"
    },
    {
      "id": 5,
      "vertexType": "COLUMN",
      "vertexId": "default.tabb2.age"
    },
    {
      "id": 6,
      "vertexType": "COLUMN",
      "vertexId": "default.tabb2.id"
    },
    {
      "id": 7,
      "vertexType": "COLUMN",
      "vertexId": "default.tabb2.name"
    }
  ]
}

二、总结

在 Spark SQL 的字段血缘实现中,我们通过其自扩展,首先拿到了 insert 语句,在我们自己的检查规则中拿到SQL 语句,通过SparkSqlParser、Analyzer、Optimizer、SparkPlanner,最终得到了物理计划。

我们通过迭代物理计划,根据不同执行计划做对应的转换,然后就得到了字段之间的对应关系。当前的实现是比较简单的,字段之间是直线的对应关系,中间过程被忽略,如果想实现字段的转换的整个过程也是没有问题的。

  大数据 最新文章
实现Kafka至少消费一次
亚马逊云科技:还在苦于ETL?Zero ETL的时代
初探MapReduce
【SpringBoot框架篇】32.基于注解+redis实现
Elasticsearch:如何减少 Elasticsearch 集
Go redis操作
Redis面试题
专题五 Redis高并发场景
基于GBase8s和Calcite的多数据源查询
Redis——底层数据结构原理
上一篇文章      下一篇文章      查看所有文章
加:2022-06-26 16:58:01  更:2022-06-26 16:59:03 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/23 16:44:08-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码