IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 大数据 -> Apache Doris 整合 FLINK CDC + Iceberg 构建实时湖仓一体的联邦查询 -> 正文阅读

[大数据]Apache Doris 整合 FLINK CDC + Iceberg 构建实时湖仓一体的联邦查询

1.概览

这篇教程将展示如何使用 Flink CDC + Iceberg + Doris 构建实时湖仓一体的联邦查询分析,Doris 1.1版本提供了Iceberg的支持,本文主要展示Doris和Iceberg怎么使用,同时本教程整个环境是都基于伪分布式环境搭建,大家按照步骤可以一步步完成。完整体验整个搭建操作的过程。

1.1 软件环境

本教程的演示环境如下:

  1. Centos7
  2. Apahce doris 1.1
  3. Hadoop 3.3.3
  4. hive 3.1.3
  5. Fink 1.14.4
  6. flink-sql-connector-mysql-cdc-2.2.1
  7. Apache Iceber 0.13.2
  8. JDK 1.8.0_311
  9. MySQL 8.0.29
wget https://archive.apache.org/dist/hadoop/core/hadoop-3.3.3/hadoop-3.3.3.tar.gz
wget https://archive.apache.org/dist/hive/hive-3.1.3/apache-hive-3.1.3-bin.tar.gz
wget https://dlcdn.apache.org/flink/flink-1.14.4/flink-1.14.4-bin-scala_2.12.tgz
wget https://search.maven.org/remotecontent?filepath=org/apache/iceberg/iceberg-flink-runtime-1.14/0.13.2/iceberg-flink-runtime-1.14-0.13.2.jar
wget https://repository.cloudera.com/artifactory/cloudera-repos/org/apache/flink/flink-shaded-hadoop-3-uber/3.1.1.7.2.9.0-173-9.0/flink-shaded-hadoop-3-uber-3.1.1.7.2.9.0-173-9.0.jar

1.2 系统架构

我们整理架构图如下

  1. 首先我们从Mysql数据中使用Flink 通过 Binlog完成数据的实时采集
  2. 然后再Flink 中创建 Iceberg 表,Iceberg的元数据保存在hive里
  3. 最后我们在Doris中创建Iceberg外表
  4. 在通过Doris 统一查询入口完成对Iceberg里的数据进行查询分析,供前端应用调用,这里iceberg外表的数据可以和Doris内部数据或者Doris其他外部数据源的数据进行关联查询分析

Doris湖仓一体的联邦查询架构如下:

  1. Doris 通过 ODBC 方式支持:MySQL,Postgresql,Oracle ,SQLServer
  2. 同时支持 Elasticsearch 外表
  3. 1.0版本支持Hive外表
  4. 1.1版本支持Iceberg外表
  5. 1.2版本支持Hudi 外表

2.环境安装部署

2.1 安装Hadoop、Hive

tar zxvf hadoop-3.3.3.tar.gz
tar zxvf apache-hive-3.1.3-bin.tar.gz

配置系统环境变量

export HADOOP_HOME=/data/hadoop-3.3.3
export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
export HADOOP_HDFS_HOME=$HADOOP_HOME
export HIVE_HOME=/data/hive-3.1.3
export PATH=$PATH:$HADOOP_HOME/bin:$HIVE_HOME/bin:$HIVE_HOME/conf

2.2 配置hdfs

2.2.1 core-site.xml

vi etc/hadoop/core-site.xml

<configuration>
    <property>
        <name>fs.defaultFS</name>
        <value>hdfs://localhost:9000</value>
    </property>
</configuration>

2.2.2 hdfs-site.xml

vi etc/hadoop/hdfs-site.xml

  <configuration>
    <property>
      <name>dfs.replication</name>
      <value>1</value>
    </property>
    <property>
      <name>dfs.namenode.name.dir</name>
      <value>/data/hdfs/namenode</value>
    </property>
    <property>
      <name>dfs.datanode.data.dir</name>
      <value>/data/hdfs/datanode</value>
    </property>
  </configuration>

2.2.3 修改Hadoop启动脚本

sbin/start-dfs.sh

sbin/stop-dfs.sh

在文件开始加上下面的内容

HDFS_DATANODE_USER=root
HADOOP_SECURE_DN_USER=hdfs
HDFS_NAMENODE_USER=root
HDFS_SECONDARYNAMENODE_USER=root

sbin/start-yarn.sh

sbin/stop-yarn.sh

在文件开始加上下面的内容

YARN_RESOURCEMANAGER_USER=root
HADOOP_SECURE_DN_USER=yarn
YARN_NODEMANAGER_USER=root

2.3 配置yarn

这里我改变了Yarn的一些端口,因为我是单机环境和Doris 的一些端口冲突。你可以不启动yarn

vi etc/hadoop/yarn-site.xml

<property>        
    <name>yarn.resourcemanager.address</name>  
    <value>jiafeng-test:50056</value> 
</property>  
<property>  
    <name>yarn.resourcemanager.scheduler.address</name> 
    <value>jiafeng-test:50057</value> 
</property> 
<property> 
    <name>yarn.resourcemanager.resource-tracker.address</name>  
    <value>jiafeng-test:50058</value> 
</property> 
<property>
    <name>yarn.resourcemanager.admin.address</name> 
    <value>jiafeng-test:50059</value> 
</property> 
<property>
    <name>yarn.resourcemanager.webapp.address</name> 
    <value>jiafeng-test:9090</value> 
</property> 
<property> 
    <name>yarn.nodemanager.localizer.address</name>
    <value>0.0.0.0:50060</value> 
</property> 
<property> 
    <name>yarn.nodemanager.webapp.address</name> 
    <value>0.0.0.0:50062</value>  
</property>

vi etc/hadoop/mapred-site.xm

<property>       
    <name>mapreduce.jobhistory.address</name>  
    <value>0.0.0.0:10020</value>  
</property> 
<property> 
    <name>mapreduce.jobhistory.webapp.address</name> 
    <value>0.0.0.0:19888</value> 
</property> 
<property> 
    <name>mapreduce.shuffle.port</name>
    <value>50061</value> 
</property>

2.2.4 启动hadoop

sbin/start-all.sh

2.4 配置Hive

2.4.1 创建hdfs目录

hdfs dfs -mkdir -p /user/hive/warehouse
hdfs dfs -mkdir /tmp
hdfs dfs -chmod g+w /user/hive/warehouse
hdfs dfs -chmod g+w /tmp

2.4.2 配置hive-site.xml

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
?
<configuration>
        <property>
            <name>javax.jdo.option.ConnectionURL</name>
            <value>jdbc:mysql://localhost:3306/hive?createDatabaseIfNotExist=true</value>
        </property>
        <property>
            <name>javax.jdo.option.ConnectionDriverName</name>
            <value>com.mysql.jdbc.Driver</value>
        </property>
        <property>
            <name>javax.jdo.option.ConnectionUserName</name>
            <value>root</value>
        </property>
        <property>
            <name>javax.jdo.option.ConnectionPassword</name>
            <value>MyNewPass4!</value>
        </property>
        <property>
                <name>hive.metastore.warehouse.dir</name>
                <value>/user/hive/warehouse</value>
                <description>location of default database for the warehouse</description>
        </property>
        <property>
                <name>hive.metastore.uris</name>
                <value/>
                <description>Thrift URI for the remote metastore. Used by metastore client to connect to remote metastore.</description>
        </property>
        <property>
                <name>javax.jdo.PersistenceManagerFactoryClass</name>
                <value>org.datanucleus.api.jdo.JDOPersistenceManagerFactory</value>
        </property>
        <property>
                <name>hive.metastore.schema.verification</name>
                <value>false</value>
        </property>
        <property>
                <name>datanucleus.schema.autoCreateAll</name>
                <value>true</value>
        </property>
</configuration>

2.4.3 配置 hive-env.sh

加入一下内容

HADOOP_HOME=/data/hadoop-3.3.3

2.4.4 hive元数据初始化

schematool -initSchema -dbType mysql

2.4.5 启动hive metaservice

后台运行

nohup bin/hive --service metaservice 1>/dev/null 2>&1 &

验证

lsof -i:9083
COMMAND   PID USER   FD   TYPE   DEVICE SIZE/OFF NODE NAME
java    20700 root  567u  IPv6 54605348      0t0  TCP *:emc-pp-mgmtsvc (LISTEN)

2.5 安装MySQL

具体请参照这里:

使用 Flink CDC 实现 MySQL 数据实时入 Apache Doris

2.5.1 创建MySQL数据库表并初始化数据

CREATE DATABASE demo;
USE demo;
CREATE TABLE userinfo (
  id int NOT NULL AUTO_INCREMENT,
  name VARCHAR(255) NOT NULL DEFAULT 'flink',
  address VARCHAR(1024),
  phone_number VARCHAR(512),
  email VARCHAR(255),
  PRIMARY KEY (`id`)
)ENGINE=InnoDB ;
INSERT INTO userinfo VALUES (10001,'user_110','Shanghai','13347420870', NULL);
INSERT INTO userinfo VALUES (10002,'user_111','xian','13347420870', NULL);
INSERT INTO userinfo VALUES (10003,'user_112','beijing','13347420870', NULL);
INSERT INTO userinfo VALUES (10004,'user_113','shenzheng','13347420870', NULL);
INSERT INTO userinfo VALUES (10005,'user_114','hangzhou','13347420870', NULL);
INSERT INTO userinfo VALUES (10006,'user_115','guizhou','13347420870', NULL);
INSERT INTO userinfo VALUES (10007,'user_116','chengdu','13347420870', NULL);
INSERT INTO userinfo VALUES (10008,'user_117','guangzhou','13347420870', NULL);
INSERT INTO userinfo VALUES (10009,'user_118','xian','13347420870', NULL);

2.6 安装 Flink

tar zxvf flink-1.14.4-bin-scala_2.12.tgz

然后需要将下面的依赖拷贝到Flink安装目录下的lib目录下,具体的依赖的lib文件如下:

下面将几个Hadoop和Flink里没有的依赖下载地址放在下面

wget https://repo1.maven.org/maven2/com/ververica/flink-sql-connector-mysql-cdc/2.2.1/flink-sql-connector-mysql-cdc-2.2.1.jar
wget https://repo1.maven.org/maven2/org/apache/thrift/libfb303/0.9.3/libfb303-0.9.3.jar
wget https://search.maven.org/remotecontent?filepath=org/apache/iceberg/iceberg-flink-runtime-1.14/0.13.2/iceberg-flink-runtime-1.14-0.13.2.jar
wget https://repository.cloudera.com/artifactory/cloudera-repos/org/apache/flink/flink-shaded-hadoop-3-uber/3.1.1.7.2.9.0-173-9.0/flink-shaded-hadoop-3-uber-3.1.1.7.2.9.0-173-9.0.jar

其他的:

hadoop-3.3.3/share/hadoop/common/lib/commons-configuration2-2.1.1.jar
hadoop-3.3.3/share/hadoop/common/lib/commons-logging-1.1.3.jar
hadoop-3.3.3/share/hadoop/tools/lib/hadoop-archive-logs-3.3.3.jar
hadoop-3.3.3/share/hadoop/common/lib/hadoop-auth-3.3.3.jar
hadoop-3.3.3/share/hadoop/common/lib/hadoop-annotations-3.3.3.jar
hadoop-3.3.3/share/hadoop/common/hadoop-common-3.3.3.jar
adoop-3.3.3/share/hadoop/hdfs/hadoop-hdfs-3.3.3.jar
hadoop-3.3.3/share/hadoop/client/hadoop-client-api-3.3.3.jar
hive-3.1.3/lib/hive-exec-3.1.3.jar
hive-3.1.3/lib/hive-metastore-3.1.3.jar
hive-3.1.3/lib/hive-hcatalog-core-3.1.3.jar

2.6.1 启动Flink

bin/start-cluster.sh

启动后的界面如下:

2.6.2 进入 Flink SQL Client

 bin/sql-client.sh embedded 

开启 checkpoint,每隔3秒做一次 checkpoint

Checkpoint 默认是不开启的,我们需要开启 Checkpoint 来让 Iceberg 可以提交事务。 并且,mysql-cdc 在 binlog 读取阶段开始前,需要等待一个完整的 checkpoint 来避免 binlog 记录乱序的情况。

注意:
这里是演示环境,checkpoint的间隔设置比较短,线上使用,建议设置为3-5分钟一次checkpoint。
Flink SQL> SET execution.checkpointing.interval = 3s;
[INFO] Session property has been set.

2.6.3 创建Iceberg Catalog

CREATE CATALOG hive_catalog WITH (
  'type'='iceberg',
  'catalog-type'='hive',
  'uri'='thrift://localhost:9083',
  'clients'='5',
  'property-version'='1',
  'warehouse'='hdfs://localhost:8020/user/hive/warehouse'
);

查看catalog

Flink SQL> show catalogs;
+-----------------+
|    catalog name |
+-----------------+
| default_catalog |
|    hive_catalog |
+-----------------+
2 rows in set

2.6.4 创建 Mysql CDC 表

 CREATE TABLE user_source (
    database_name STRING METADATA VIRTUAL,
    table_name STRING METADATA VIRTUAL,
    `id` DECIMAL(20, 0) NOT NULL,
    name STRING,
    address STRING,
    phone_number STRING,
    email STRING,
    PRIMARY KEY (`id`) NOT ENFORCED
  ) WITH (
    'connector' = 'mysql-cdc',
    'hostname' = 'localhost',
    'port' = '3306',
    'username' = 'root',
    'password' = 'MyNewPass4!',
    'database-name' = 'demo',
    'table-name' = 'userinfo'
  );

查询CDC表:

select * from user_source;

2.6.5 创建Iceberg表

---查看catalog
show catalogs;
---使用catalog
use catalog hive_catalog;
--创建数据库
CREATE DATABASE iceberg_hive; 
--使用数据库
use iceberg_hive;
?

2.6.5.1 创建表

CREATE TABLE all_users_info (
    database_name STRING,
    table_name    STRING,
    `id`          DECIMAL(20, 0) NOT NULL,
    name          STRING,
    address       STRING,
    phone_number  STRING,
    email         STRING,
    PRIMARY KEY (database_name, table_name, `id`) NOT ENFORCED
  ) WITH (
    'catalog-type'='hive'
  );

从CDC表里插入数据到Iceberg表里

use catalog default_catalog;
?
insert into hive_catalog.iceberg_hive.all_users_info select * from user_source;

在web界面可以看到任务的运行情况

然后停掉任务,我们去查询iceberg表

select * from hive_catalog.iceberg_hive.all_users_info

可以看到下面的结果

我们去hdfs上可以看到hive目录下的数据及对应的元数据

我们也可以通过Hive建好Iceberg表,然后通过Flink将数据插入到表里

下载Iceberg Hive运行依赖

 wget https://repo1.maven.org/maven2/org/apache/iceberg/iceberg-hive-runtime/0.13.2/iceberg-hive-runtime-0.13.2.jar

在hive shell下执行:

SET engine.hive.enabled=true; 
SET iceberg.engine.hive.enabled=true; 
SET iceberg.mr.catalog=hive; 
 add jar /path/to/iiceberg-hive-runtime-0.13.2.jar;

创建表

CREATE EXTERNAL TABLE iceberg_hive( 
  `id` int, 
  `name` string)
STORED BY 'org.apache.iceberg.mr.hive.HiveIcebergStorageHandler' 
LOCATION 'hdfs://localhost:8020/user/hive/warehouse/iceber_db/iceberg_hive'
TBLPROPERTIES (
  'iceberg.mr.catalog'='hadoop', 
'iceberg.mr.catalog.hadoop.warehouse.location'='hdfs://localhost:8020/user/hive/warehouse/iceber_db/iceberg_hive'
  ); 

然后再Flink SQL Client下执行下面语句将数据插入到Iceber表里

INSERT INTO hive_catalog.iceberg_hive.iceberg_hive values(2, 'c');
INSERT INTO hive_catalog.iceberg_hive.iceberg_hive values(3, 'zhangfeng');

查询这个表

select * from hive_catalog.iceberg_hive.iceberg_hive

可以看到下面的结果

3. Doris 查询 Iceberg

Apache Doris 提供了 Doris 直接访问 Iceberg 外部表的能力,外部表省去了繁琐的数据导入工作,并借助 Doris 本身的 OLAP 的能力来解决 Iceberg 表的数据分析问题:

  1. 支持 Iceberg 数据源接入Doris
  2. 支持 Doris 与 Iceberg 数据源中的表联合查询,进行更加复杂的分析操作

3.1安装Doris

这里我们不在详细讲解Doris的安装,如果你不知道怎么安装Doris请参照官方文档:快速入门

3.2 创建Iceberg外表

CREATE TABLE `all_users_info` 
ENGINE = ICEBERG
PROPERTIES (
"iceberg.database" = "iceberg_hive",
"iceberg.table" = "all_users_info",
"iceberg.hive.metastore.uris"  =  "thrift://localhost:9083",
"iceberg.catalog.type"  =  "HIVE_CATALOG"
);

参数说明:

  • ENGINE 需要指定为 ICEBERG
  • PROPERTIES 属性:
    • iceberg.hive.metastore.uris:Hive Metastore 服务地址
    • iceberg.database:挂载 Iceberg 对应的数据库名
    • iceberg.table:挂载 Iceberg 对应的表名,挂载 Iceberg database 时无需指定。
    • iceberg.catalog.type:Iceberg 中使用的 catalog 方式,默认为?HIVE_CATALOG,当前仅支持该方式,后续会支持更多的 Iceberg catalog 接入方式。

mysql> CREATE TABLE `all_users_info`
    -> ENGINE = ICEBERG
    -> PROPERTIES (
    -> "iceberg.database" = "iceberg_hive",
    -> "iceberg.table" = "all_users_info",
    -> "iceberg.hive.metastore.uris"  =  "thrift://localhost:9083",
    -> "iceberg.catalog.type"  =  "HIVE_CATALOG"
    -> );
Query OK, 0 rows affected (0.23 sec)
?
mysql> select * from all_users_info;
+---------------+------------+-------+----------+-----------+--------------+-------+
| database_name | table_name | id    | name     | address   | phone_number | email |
+---------------+------------+-------+----------+-----------+--------------+-------+
| demo          | userinfo   | 10004 | user_113 | shenzheng | 13347420870  | NULL  |
| demo          | userinfo   | 10005 | user_114 | hangzhou  | 13347420870  | NULL  |
| demo          | userinfo   | 10002 | user_111 | xian      | 13347420870  | NULL  |
| demo          | userinfo   | 10003 | user_112 | beijing   | 13347420870  | NULL  |
| demo          | userinfo   | 10001 | user_110 | Shanghai  | 13347420870  | NULL  |
| demo          | userinfo   | 10008 | user_117 | guangzhou | 13347420870  | NULL  |
| demo          | userinfo   | 10009 | user_118 | xian      | 13347420870  | NULL  |
| demo          | userinfo   | 10006 | user_115 | guizhou   | 13347420870  | NULL  |
| demo          | userinfo   | 10007 | user_116 | chengdu   | 13347420870  | NULL  |
+---------------+------------+-------+----------+-----------+--------------+-------+
9 rows in set (0.18 sec)

3.3 同步挂在

当 Iceberg 表 Schema 发生变更时,可以通过?REFRESH?命令手动同步,该命令会将 Doris 中的 Iceberg 外表删除重建。

-- 同步 Iceberg 表
REFRESH TABLE t_iceberg;
?
-- 同步 Iceberg 数据库
REFRESH DATABASE iceberg_test_db;

3.4 Doris 和 Iceberg 数据类型对应关系

支持的 Iceberg 列类型与 Doris 对应关系如下表:

IcebergDoris描述
BOOLEANBOOLEAN
INTEGERINT
LONGBIGINT
FLOATFLOAT
DOUBLEDOUBLE
DATEDATE
TIMESTAMPDATETIMETimestamp 转成 Datetime 会损失精度
STRINGSTRING
UUIDVARCHAR使用 VARCHAR 来代替
DECIMALDECIMAL
TIME-不支持
FIXED-不支持
BINARY-不支持
STRUCT-不支持
LIST-不支持
MAP-不支持

3.5 注意事项

  • Iceberg 表 Schema 变更不会自动同步,需要在 Doris 中通过?REFRESH?命令同步 Iceberg 外表或数据库。
  • 当前默认支持的 Iceberg 版本为 0.12.0,0.13.x,未在其他版本进行测试。后续后支持更多版本。

3.6 Doris FE 配置

下面几个配置属于 Iceberg 外表系统级别的配置,可以通过修改?fe.conf?来配置,也可以通过?ADMIN SET CONFIG?来配置。

  • iceberg_table_creation_strict_mode
    创建 Iceberg 表默认开启 strict mode。 strict mode 是指对 Iceberg 表的列类型进行严格过滤,如果有 Doris 目前不支持的数据类型,则创建外表失败。
  • iceberg_table_creation_interval_second
    自动创建 Iceberg 表的后台任务执行间隔,默认为 10s。
  • max_iceberg_table_creation_record_size
    Iceberg 表创建记录保留的最大值,默认为 2000. 仅针对创建 Iceberg 数据库记录。

4. 总结

这里Doris On Iceberg我们只演示了Iceberg单表的查询,你还可以联合Doris的表,或者其他的ODBC外表,Hive外表,ES外表等进行联合查询分析,通过Doris对外提供统一的查询分析入口。

自此我们完整从搭建Hadoop,hive、flink 、Mysql、Doris 及Doris On Iceberg的使用全部介绍完了,Doris朝着数据仓库和数据融合的架构演进,支持湖仓一体的联邦查询,给我们的开发带来更多的便利,更高效的开发,省去了很多数据同步的繁琐工作,快快来体验吧。

  大数据 最新文章
实现Kafka至少消费一次
亚马逊云科技:还在苦于ETL?Zero ETL的时代
初探MapReduce
【SpringBoot框架篇】32.基于注解+redis实现
Elasticsearch:如何减少 Elasticsearch 集
Go redis操作
Redis面试题
专题五 Redis高并发场景
基于GBase8s和Calcite的多数据源查询
Redis——底层数据结构原理
上一篇文章      下一篇文章      查看所有文章
加:2022-07-03 10:53:18  更:2022-07-03 10:54:38 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/16 1:42:27-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码