IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 大数据 -> 面向未来的大数据核心技术都有什么? -> 正文阅读

[大数据]面向未来的大数据核心技术都有什么?

1、数据采集

数据采集的任务就是把数据从各种数据源中采集和存储到数据存储上,期间有可能会做一些简单的清洗。数据源的种类比较多:

网站日志:作为互联网行业,网站日志占的份额最大,网站日志存储在多台网站日志服务器上,一般是在每台网站日志服务器上部署flume agent,实时的收集网站日志并存储到HDFS上;

业务数据库:业务数据库的种类也是多种多样,有Mysql、Oracle、SqlServer等,这时候,我们迫切的需要一种能从各种数据库中将数据同步到HDFS上的工具,Sqoop是一种,但是Sqoop太过繁重,而且不管数据量大小,都需要启动MapReduce来执行,而且需要Hadoop集群的每台机器都能访问业务数据库;应对此场景,淘宝开源的DataX,是一个很好的解决方案,有资源的话,可以基于DataX之上做二次开发,就能非常好的解决。当然,Flume通过配置与开发,也可以实时的从数据库中同步数据到HDFS。

来自于Ftp/Http的数据源:有可能一些合作伙伴提供的数据,需要通过Ftp/Http等定时获取,DataX也可以满足该需求;

其他数据源:比如一些手工录入的数据,只需要提供一个接口或小程序即可完成。

2、数据存储与分析

毋庸置疑HDFS是大数据环境下数据仓库/数据平台最完美的数据存储解决方案。

离线数据分析与计算,也就是对实时性要求不高的部分,在笔者看来,Hive还是首当其冲的选择,丰富的数据类型、内置函数;压缩比非常高的ORC文件存储格式;非常方便的SQL支持,使得Hive在基于结构化数据上的统计分析远远比MapReduce要高效的多,一句SQL可以完成的需求,开发MR可能需要上百行代码。

当然,使用Hadoop框架自然而然也提供了MapReduce接口,如果真的很乐意开发Java,或者对SQL不熟,那么也可以使用MapReduce来做分析与计算。Spark是这两年非常火的,经过实践,它的性能的确比MapReduce要好很多,而且和Hive、Yarn结合的越来越好,因此,必须支持使用Spark和SparkSQL来做分析和计算。因为已经有Hadoop Yarn,使用Spark其实是非常容易的,不用单独部署Spark集群。

3、数据共享

这里的数据共享,其实指的是前面数据分析与计算后的结果存放的地方,其实就是关系型数据库和NOSQL数据库;前面使用Hive、MR、Spark、SparkSQL分析和计算的结果,还是在HDFS上,但大多业务和应用不可能直接从HDFS上获取数据,那么就需要一个数据共享的地方,使得各业务和产品能方便的获取数据;和数据采集层到HDFS刚好相反,这里需要一个从HDFS将数据同步至其他目标数据源的工具,同样,DataX也可以满足。

另外一些实时计算的结果数据可能由实时计算模块直接写入数据共享。

4、数据应用

业务产品业务产品所使用的数据,已经存在于数据共享层,直接从数据共享层访问即可;报表(FineReport、业务报表)同业务产品,报表所使用的数据,一般也是已经统计汇总好的,存放于数据共享层;即席查询即席查询的用户有很多,有可能是数据开发人员、网站和产品运营人员、数据分析人员、甚至是部门老大,他们都有即席查询数据的需求;这种即席查询通常是现有的报表和数据共享层的数据并不能满足他们的需求,需要从数据存储层直接查询。即席查询一般是通过SQL完成,最大的难度在于响应速度上,使用Hive有点慢,可以用SparkSQL,它的响应速度较Hive快很多,而且能很好的与Hive兼容。当然,你也可以使用Impala,如果不在乎平台中再多一个框架的话。

OLAP目前,很多的OLAP工具不能很好的支持从HDFS上直接获取数据,都是通过将需要的数据同步到关系型数据库中做OLAP,但如果数据量巨大的话,关系型数据库显然不行;这时候,需要做相应的开发,从HDFS或者HBase中获取数据,完成OLAP的功能;比如:根据用户在界面上选择的不定的维度和指标,通过开发接口,从HBase中获取数据来展示。

其它数据接口这种接口有通用的,有定制的。比如:一个从Redis中获取用户属性的接口是通用的,所有的业务都可以调用这个接口来获取用户属性。

5、实时计算

现在业务对数据仓库实时性的需求越来越多,比如:实时的了解网站的整体流量;实时的获取一个广告的曝光和点击;在海量数据下,依靠传统数据库和传统实现方法基本完成不了,需要的是一种分布式的、高吞吐量的、延时低的、高可靠的实时计算框架;Storm在这块是比较成熟了,但我选择Spark Streaming,原因很简单,不想多引入一个框架到平台中,另外,Spark Streaming比Storm延时性高那么一点点,那对于我们的需要可以忽略。

我们目前使用Spark Streaming实现了实时的网站流量统计、实时的广告效果统计两块功能。做法也很简单,由Flume在前端日志服务器上收集网站日志和广告日志,实时的发送给Spark Streaming,由Spark Streaming完成统计,将数据存储至Redis,业务通过访问Redis实时获取。

6、任务调度与监控

在数据仓库/数据平台中,有各种各样非常多的程序和任务,比如:数据采集任务、数据同步任务、数据分析任务等;这些任务除了定时调度,还存在非常复杂的任务依赖关系,比如:数据分析任务必须等相应的数据采集任务完成后才能开始;数据同步任务需要等数据分析任务完成后才能开始;

这就需要一个非常完善的任务调度与监控系统,它作为数据仓库/数据平台的中枢,负责调度和监控所有任务的分配与运行


最新教程

2022年hadoop3.x入门2022最新黑马程序员大数据Hadoop入门视频教程,最适合零基础自学的大数据Hadoop教程
2022年大数据spark3.2入门黑马程序员Spark全套视频教程,4天spark3.2快速入门到精通,全网首套基于Python语言的spark教程
2022年MySQL基础入门2022黑马程序员最新MySQL知识精讲+mysql实战案例_零基础mysql数据库入门到高级全套教程

Python+大数据开发

MySQL数据库:2022黑马程序员最新MySQL知识精讲+mysql实战案例_零基础mysql数据库入门到高级全套教程
Hadoop入门:2022最新黑马程序员大数据Hadoop入门视频教程,最适合零基础自学的大数据Hadoop教程
Hive数仓项目:黑马程序员大数据项目实战教程_大数据企业级离线数据仓库,在线教育项目实战(Hive数仓项目完整流程)

PB内存计算
Python入门:黑马程序员全套Python教程_Python基础入门视频教程,零基础小白自学Python必备教程
Python编程进阶:黑马程序员Python高级语法进阶教程_python多任务及网络编程,从零搭建网站全套教程
spark3.2从基础到精通:黑马程序员Spark全套视频教程,4天spark3.2快速入门到精通,全网首套基于Python语言的spark教程
Hive+Spark离线数仓工业项目实战:全网首次披露大数据Spark离线数仓工业项目实战,Hive+Spark构建企业级大数据平台
?

?

  大数据 最新文章
实现Kafka至少消费一次
亚马逊云科技:还在苦于ETL?Zero ETL的时代
初探MapReduce
【SpringBoot框架篇】32.基于注解+redis实现
Elasticsearch:如何减少 Elasticsearch 集
Go redis操作
Redis面试题
专题五 Redis高并发场景
基于GBase8s和Calcite的多数据源查询
Redis——底层数据结构原理
上一篇文章      下一篇文章      查看所有文章
加:2022-07-04 22:59:49  更:2022-07-04 23:00:06 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/16 1:39:55-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码