为什么选用Flume
flume最主要的作用就是,实时读取服务器本地磁盘数据,将数据写入到HDFS。(最主流)
Flume架构

案例1
在flume下建立一个文件(文件命名一般都是source-flume-sink,见名见意) 
# example.conf: A single-node Flume configuration
# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe/configure the source
a1.sources.r1.type = netcat
a1.sources.r1.bind = localhost
a1.sources.r1.port = 44444
# Describe the sink
a1.sinks.k1.type = logger
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
要注意这里: a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1 这两行代表的这种意思  一个source能够发给多个channel,但是一个channel只能发给一个sink 
shell启动命令
//官网给的启动,提示
$ bin/flume-ng agent -n $agent_name -c conf -f conf/flume-conf.properties.template -Dflume.root.logger=INFO,console
//我的启动
bin/flume-ng agent -n a1 -c conf/ -f job/net-flume-logger.co -Dflume.root.logger=INFO,console
–conf/-c:表示配置文件存储在 conf/目录 –name/-n:表示给 agent 起名为 a1 –conf-file/-f:flume 本次启动读取的配置文件是在 job 文件夹下的 flume-telnet.conf 文件。 -Dflume.root.logger=INFO,console :-D 表示 flume 运行时动态修改 flume.root.logger 参数属性值,并将控制台日志打印级别设置为 INFO 级别。日志级别包括:log、info、warn、 error。
 启动成功
使用 netcat 工具向本机的 44444 端口发送内容  在 Flume 监听页面观察接收数据情况

案例二(实时监控单个追加文件)
案例需求:实时监控 Hive 日志,并上传到 HDFS 中 实时读取本地文件到HDFS
基本步骤

实施步骤
在flume下的job目录下创建一个文件
vim flume-file-hdfs.conf
需要注意的是:
要想读取Linux中文件,就得Linux命令的规则执行命令。 由于Hive的日志是在Linux系统中,所以读取文件的类型选择为exec(也就是executor 执行者 的意思)。 表示执行Linux命令来读取文件
配置信息如下
查看flume链接 选择用户指南  因为我们要上传文件到HDFS中,也就是sink端为HDFS,我们可以搜hdfs sink 查看需要什么配置参数 
a2.sources = r2
a2.sinks = k2
a2.channels = c2
a2.sources.r2.type = exec
a2.sources.r2.command = tail -F /opt/module/hive/logs/hive.log
a2.sources.r2.shell = /bin/bash -c
a2.sinks.k2.type = hdfs
a2.sinks.k2.hdfs.path = hdfs://hadoop102:9000/flume/%Y%m%d/%H
a2.sinks.k2.hdfs.filePrefix = logs-
a2.sinks.k2.hdfs.round = true
a2.sinks.k2.hdfs.roundValue = 1
a2.sinks.k2.hdfs.roundUnit = hour
a2.sinks.k2.hdfs.useLocalTimeStamp = true
a2.sinks.k2.hdfs.batchSize = 100
a2.sinks.k2.hdfs.fileType = DataStream
a2.sinks.k2.hdfs.rollInterval = 30
a2.sinks.k2.hdfs.rollSize = 134217700
a2.sinks.k2.hdfs.rollCount = 0
a2.channels.c2.type = memory
a2.channels.c2.capacity = 1000
a2.channels.c2.transactionCapacity = 100
a2.sources.r2.channels = c2
a2.sinks.k2.channel = c2

开始测试
启动flume任务  启动hive,在hive里面操作,查看hdfs 文件没有刷新前后缀是tmp,只要达到你设定的条件就会变成文件,例如30s,128M,等等 

实时监控目录下多个新文件
使用 Flume 监听整个目录的文件,并上传至 HDFS,了解断点续传
需求分析

实现步骤
- 创建文件夹
[root@hadoop01 apache-flume-1.9.0-bin]
- 在job目录下创建文件flume-dir-hdfs.conf
内容如下(配置文件)
a3.sources = r3
a3.sinks = k3
a3.channels = c3
a3.sources.r3.type = spooldir
a3.sources.r3.spoolDir = /opt/module/flume/upload
a3.sources.r3.fileSuffix = .COMPLETED
a3.sources.r3.fileHeader = true
a3.sources.r3.ignorePattern = ([^ ]*\.tmp)
a3.sinks.k3.type = hdfs
a3.sinks.k3.hdfs.path =
hdfs://hadoop102:9000/flume/upload/%Y%m%d/%H
a3.sinks.k3.hdfs.filePrefix = upload-
a3.sinks.k3.hdfs.round = true
a3.sinks.k3.hdfs.roundValue = 1
a3.sinks.k3.hdfs.roundUnit = hour
a3.sinks.k3.hdfs.useLocalTimeStamp = true
a3.sinks.k3.hdfs.batchSize = 100
a3.sinks.k3.hdfs.fileType = DataStream
a3.sinks.k3.hdfs.rollInterval = 60
a3.sinks.k3.hdfs.rollSize = 134217700
a3.sinks.k3.hdfs.rollCount = 0
a3.channels.c3.type = memory
a3.channels.c3.capacity = 1000
a3.channels.c3.transactionCapacity = 100
a3.sources.r3.channels = c3
a3.sinks.k3.channel = c3

- 运行文件
[root@hadoop01 apache-flume-1.9.0-bin]
- 向 upload 文件夹中添加文件

 上传成功后会出现以 .COMPLETED结尾的文件夹,说明flume已经将此文件上传了,以后不再监控。 所以, 不要在监控的目录中创建和修改文件。 监控的文件会500毫秒扫描一次。
实时监控目录下的多个追加文件
案例需求
使用 Flume 监听整个目录的实时追加文件,并上传至 HDFS 
实现步骤
- 配置参数
这里我是打印到控制台上,去hdfs也是同上面一样
a1.sources = r1
a1.sinks = k1
a1.channels = c1
a1.sources.r1.type = TAILDIR
a1.sources.r1.filegroups = f1
a1.sources.r1.filegroups.f1 = /export/servers/apache-flume-1.9.0-bin/testData/.*.txt
a1.sources.r1.positionFile = /export/servers/apache-flume-1.9.0-bin/position/position.json
a1.sinks.k1.type = logger
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
 2. 启动监管命令
[root@hadoop01 apache-flume-1.9.0-bin]
- 向文件夹中追加内容

Taildir Source 维护了一个 json 格式的 position File,其会定期的往 position File 中更新每个文件读取到的最新的位置,因此能够实现断点续传。Position File 的格式如下: {“inode”:2496272,“pos”:12,“file”:“/opt/module/flume/files/file1.txt”} {“inode”:2496275,“pos”:12,“file”:“/opt/module/flume/files/file2.txt”}
flume事务

Flume Agent内部原理
 1)ChannelSelector ChannelSelector 的作用就是选出 Event 将要被发往哪个 Channel。其共有两种类型, 分别是 Replicating(复制)和 Multiplexing(多路复用)。 ReplicatingSelector 会将同一个 Event 发往所有的 Channel,Multiplexing 会根据相 应的原则,将不同的 Event 发往不同的 Channel。 2)SinkProcessor SinkProcessor 共 有 三 种 类 型 , 分 别 是 DefaultSinkProcessor 、 LoadBalancingSinkProcessor 和 FailoverSinkProcessor DefaultSinkProcessor 对 应 的 是 单 个 的 Sink , LoadBalancingSinkProcessor 和 FailoverSinkProcessor 对应的是 Sink Group,LoadBalancingSinkProcessor 可以实现负 载均衡的功能,FailoverSinkProcessor 可以实现故障转移的功能。
复用和多路复用

步骤
-
在flume/job/下创建文件夹group1 在flume/testData下创建文件夹flume3和hive.log 在flume/position下创建文件position2.json -
创建flume-1,在flume/job/group1下创建文件flume-file-flume.conf,配置如下:
a1.sources = r1
a1.sinks = k1 k2
a1.channels = c1 c2
a1.sources.r1.type = TAILDIR
a1.sources.r1.filegroups = f1
a1.sources.r1.filegroups.f1 = /export/servers/apache-flume-1.9.0-bin/testData/hive.log
a1.sources.r1.positionFile = /export/servers/apache-flume-1.9.0-bin/position/position1.json
a1.sinks.k1.type = avro
a1.sinks.k1.hostname = hadoop01
a1.sinks.k1.port = 4141
a1.sinks.k2.type = avro
a1.sinks.k2.hostname = hadoop01
a1.sinks.k2.port = 4142
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
a1.channels.c2.type = memory
a1.channels.c2.capacity = 1000
a1.channels.c2.transactionCapacity = 100
a1.sources.r1.channels = c1 c2
a1.sinks.k1.channel = c1
a1.sinks.k2.channel = c2
- 创建flume-2,在flume/job/group1下创建文件flume-flume-hdfs.conf,配置如下:
a2.sources = r1
a2.sinks = k1
a2.channels = c1
a2.sources.r1.type = avro
a2.sources.r1.bind = hadoop01
a2.sources.r1.port = 4141
a2.sinks.k1.type = hdfs
a2.sinks.k1.hdfs.path = hdfs://hadoop01:9000/flume2/%Y%m%d/%H
a2.sinks.k1.hdfs.filePrefix = flume2-
a2.sinks.k1.hdfs.round = true
a2.sinks.k1.hdfs.roundValue = 1
a2.sinks.k1.hdfs.roundUnit = hour
a2.sinks.k1.hdfs.useLocalTimeStamp = true
a2.sinks.k1.hdfs.batchSize = 100
a2.sinks.k1.hdfs.fileType = DataStream
a2.sinks.k1.hdfs.rollInterval = 30
a2.sinks.k1.hdfs.rollSize = 134217700
a2.sinks.k1.hdfs.rollCount = 0
a2.channels.c1.type = memory
a2.channels.c1.capacity = 100
a2.channels.c1.transactionCapacity = 100
a2.sources.r1.channels = c1
a2.sinks.k1.channel = c1
- 创建flume-2,在flume/job/group1下创建文件flume-flume-file.conf,配置如下:
a3.sources = r1
a3.sinks = k1
a3.channels = c2
a3.sources.r1.type = avro
a3.sources.r1.bind = hadoop01
a3.sources.r1.port = 4142
a3.sinks.k1.type = file_roll
a3.sinks.k1.sink.directory = /export/servers/apache-flume-1.9.0-bin/testData/flume3/
a3.channels.c2.type = memory
a3.channels.c2.capacity = 1000
a3.channels.c2.transactionCapacity = 100
a3.sources.r1.channels = c2
a3.sinks.k1.channel = c2
提示:输出的本地目录必须是已经存在的目录,如果该目录不存在,并不会创建新的目录。 5. 执行文件
bin/flume-ng agent -n a1 -c conf/ -f job/group1/flume-file-flume.conf
bin/flume-ng agent -n a2 -c conf/ -f job/group1/flume-flume-hdfs.conf
bin/flume-ng agent -n a3 -c conf/ -f job/group1/flume-flume-file.conf
- 测试
 hdfs创建文件了  里面内容为  在磁盘中,文件生成 
故障转移

配置文件
- 在Linux中创建好文件
 - flume1.conf的配置如下
a1.sources = r1
a1.channels = c1
a1.sinkgroups = g1
a1.sinks = k1 k2
a1.sources.r1.type = netcat
a1.sources.r1.bind = localhost
a1.sources.r1.port = 44444
a1.sinkgroups.g1.processor.type = failover
a1.sinkgroups.g1.processor.priority.k1 = 5
a1.sinkgroups.g1.processor.priority.k2 = 10
a1.sinkgroups.g1.processor.maxpenalty = 10000
a1.sinks.k1.type = avro
a1.sinks.k1.hostname = hadoop01
a1.sinks.k1.port = 4141
a1.sinks.k2.type = avro
a1.sinks.k2.hostname = hadoop01
a1.sinks.k2.port = 4142
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
a1.sources.r1.channels = c1
a1.sinkgroups.g1.sinks = k1 k2
a1.sinks.k1.channel = c1
a1.sinks.k2.channel = c1
- flume2.conf的配置如下
a2.sources = r1
a2.sinks = k1
a2.channels = c1
a2.sources.r1.type = avro
a2.sources.r1.bind = hadoop01
a2.sources.r1.port = 4141
a2.sinks.k1.type = logger
a2.channels.c1.type = memory
a2.channels.c1.capacity = 1000
a2.channels.c1.transactionCapacity = 100
a2.sources.r1.channels = c1
a2.sinks.k1.channel = c1
- flume3.conf的配置如下
a3.sources = r1
a3.sinks = k1
a3.channels = c2
a3.sources.r1.type = avro
a3.sources.r1.bind = hadoop01
a3.sources.r1.port = 4142
a3.sinks.k1.type = logger
a3.channels.c2.type = memory
a3.channels.c2.capacity = 1000
a3.channels.c2.transactionCapacity = 100
a3.sources.r1.channels = c2
a3.sinks.k1.channel = c2
- 分别运行
bin/flume-ng agent -n a1 -c conf/ -f job/group2/flume1.conf
bin/flume-ng agent -n a2 -c conf/ -f job/group2/flume2.conf -Dflume.root.loogger=INFO,console
bin/flume-ng agent -n a3 -c conf/ -f job/group2/flume3.conf -Dflume.root.loogger=INFO,console
- 在netcat中发送消息,flume3先收到,无论我怎么发都是flume3收到
 7. 把flume3停掉(模拟挂掉的场景) 使用netcat发送消息,可以看到在flume2出现 
负载均衡
- 这里与上面操作其实,类似,我们只需要更改一下flume1文件就ok
- 配置文件如下
a1.sources = r1
a1.channels = c1
a1.sinkgroups = g1
a1.sinks = k1 k2
a1.sources.r1.type = netcat
a1.sources.r1.bind = localhost
a1.sources.r1.port = 44444
a1.sinkgroups.g1.processor.type = load_balance
a1.sinkgroups.g1.processor.backoff = true
a1.sinkgroups.g1.processor.selector = random
a1.sinks.k1.type = avro
a1.sinks.k1.hostname = hadoop01
a1.sinks.k1.port = 4141
a1.sinks.k2.type = avro
a1.sinks.k2.hostname = hadoop01
a1.sinks.k2.port = 4142
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
a1.sources.r1.channels = c1
a1.sinkgroups.g1.sinks = k1 k2
a1.sinks.k1.channel = c1
a1.sinks.k2.channel = c1
运行,随机在flume2和flume3中传输数据 
聚合
看尚硅谷文档,配置思想一样的
|