1.实时数仓DWD层
DWD是明细数据层,该层的表结构和粒度与原始表保持一致,不过需要对ODS层数据进行清洗、维度退化、脱敏等,最终得到的数据是干净的,完整的、一致的数据。
(1)对用户行为数据解析。
(2)对核心数据进行空值过滤。
(3)对业务数据采集维度模型重新建模,即维度退化。
2.基于车辆出行的维度建模
3.基于Flink SQL搭建实时数仓DWD层
package com.bigdata.warehouse.dwd;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; import org.apache.flink.table.api.Table; import org.apache.flink.table.api.bridge.java.StreamTableEnvironment; public class DwdCarsLog { public static void main(String[] args) {
//1.获取Stream的执行环境 StreamExecutionEnvironment senv = StreamExecutionEnvironment.getExecutionEnvironment(); //设置并行度 //senv.setParallelism(1); //开启checkpoint容错 //senv.enableCheckpointing(60000); //senv.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE); //senv.getCheckpointConfig().setMinPauseBetweenCheckpoints(30000); //senv.getCheckpointConfig().setCheckpointTimeout(10000); //senv.getCheckpointConfig().setMaxConcurrentCheckpoints(1); //设置状态后端 //(1)开启RocksDB //senv.setStateBackend(new EmbeddedRocksDBStateBackend()); //(2)设置checkpoint 存储 //senv.getCheckpointConfig().setCheckpointStorage(new FileSystemCheckpointStorage("hdfs://mycluster/flink/checkpoints")); //2.创建表执行环境 StreamTableEnvironment tEnv = StreamTableEnvironment.create(senv); //3.读取车辆进出事实表 tEnv.executeSql("CREATE TABLE ods_cars_log (" + " id STRING," + " opTime STRING," + " ctype SMALLINT," + " carCode STRING," + " cId BIGINT," + " proc_time as PROCTIME() "+ ") WITH (" + " 'connector' = 'kafka'," + " 'topic' = 'ods_cars_log'," + " 'properties.bootstrap.servers' = 'hadoop1:9092'," + " 'properties.group.id' = 'ods_cars_log'," + " 'scan.startup.mode' = 'earliest-offset'," + " 'format' = 'json'" + ")");
//4.读取车辆维度表 tEnv.executeSql("CREATE TABLE dim_base_cars ( " + " id INT, " + " owerId INT, " + " carCode STRING, " + " carColor STRING, " + " type TINYINT, " + " remark STRING, " + " PRIMARY KEY(id) NOT ENFORCED " + ") WITH ( " + " 'connector' = 'jdbc', " + " 'url' = 'jdbc:mysql://hadoop1:3306/sca?useUnicode=true&characterEncoding=utf8', " + " 'table-name' = 'dim_base_cars', " + " 'username' = 'hive', " + " 'password' = 'hive' " + ")");
//5.关联事实表与维度表获取车辆进出明细表 Table resultTable = tEnv.sqlQuery("select " + "cl.id, " + "c.owerId, " + "cl.opTime, " + "cl.cId, " + "cl.carCode, " + "cl.ctype " + "from ods_cars_log cl " + "left join dim_base_cars for system_time as of cl.proc_time as c " + "on cl.carCode=c.carCode"); tEnv.createTemporaryView("resultTable",resultTable);
//6.创建dwd_cars_log表 tEnv.executeSql("CREATE TABLE dwd_cars_log ( " + " id STRING, " + " owerId INT, " + " opTime STRING, " + " cId BIGINT, " + " carCode STRING, " + " ctype SMALLINT, " + " PRIMARY KEY (id) NOT ENFORCED " + ") WITH ( " + " 'connector' = 'upsert-kafka', " + " 'topic' = 'dwd_cars_log', " + " 'properties.bootstrap.servers' = 'hadoop1:9092', " + " 'key.format' = 'json', " + " 'value.format' = 'json' " + ")");
//7.将关联结果写入dwd_cars_log表 tEnv.executeSql("insert into dwd_cars_log select * from resultTable"); } }
4.基于Kafka创建DWD层topic
#创建kafka topic
bin/kafka-topics.sh --zookeeper localhost:2181 --create --topic dwd_cars_log --replication-factor 3 --partitions 1
5.查看实时数仓DWD层结果
#消费kafka topic
bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic dwd_cars_log --from-beginning
如果控制台打印预期结果,说明实时数仓DWD层搭建成功。
{"id":"3bfe7e59-4771-4aa8-ab90-80c98010c4ea","owerId":10022759,"opTime":"2022-07-15 11:59:55.443","cId":10000095,"carCode":"青I·PY2MR","ctype":2}
{"id":"36208b62-739b-4eea-abf4-9f26b85b85d1","owerId":10075672,"opTime":"2022-07-15 11:59:56.443","cId":10000311,"carCode":"渝Z·C0AFY","ctype":1} {"id":"2a5df539-4668-4a42-8013-978b82b3c318","owerId":10126156,"opTime":"2022-07-15 11:59:57.443","cId":10000526,"carCode":"晋B·1RPVV","ctype":1} {"id":"2bd0ce39-1c39-4db5-9376-68e297fda4b0","owerId":10206773,"opTime":"2022-07-15 11:59:58.443","cId":10000843,"carCode":"冀D·FX3IJ","ctype":2} {"id":"2959544d-53f9-43e4-9101-96629fecdcc6","owerId":10153485,"opTime":"2022-07-15 11:59:59.443","cId":10000631,"carCode":"晋D·8OWIR","ctype":2} {"id":"2fd665f9-ea27-44fd-a8cd-1f204ab2d5fc","owerId":10152560,"opTime":"2022-07-15 12:00:00.099","cId":10000627,"carCode":"贵A·MVO77","ctype":2} {"id":"3c283bc5-5616-43cf-87b2-c94396ced64f","owerId":10103872,"opTime":"2022-07-15 12:00:01.037","cId":10000425,"carCode":"辽L·3C5DU","ctype":1} {"id":"3634862d-c824-4829-a017-0082b7514471","owerId":10234908,"opTime":"2022-07-15 12:00:02.376","cId":10000961,"carCode":"沪T·QNNXP","ctype":1} {"id":"2b4a4d0f-4441-4e75-8437-008dfea5c03c","owerId":10228881,"opTime":"2022-07-15 12:00:03.33","cId":10000938,"carCode":"闽E·GZKRQ","ctype":2} {"id":"2ce336bc-2b31-4089-ae85-a76921c6a306","owerId":10144509,"opTime":"2022-07-15 12:00:04.819","cId":10000596,"carCode
|