IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 大数据 -> 猿创征文|Flink 1.13 源码解析——TaskManager启动流程 之 初始化TaskExecutor -> 正文阅读

[大数据]猿创征文|Flink 1.13 源码解析——TaskManager启动流程 之 初始化TaskExecutor

??????点击这里查看 Flink 1.13 源码解析 目录汇总

点击查看相关章节Flink 1.13 源码解析——启动脚本解析

点击查看相关章节Flink 1.13 源码解析前导——Akka通信模型

点击查看相关章节Flink 1.13 源码解析——JobManager启动流程之ResourceManager启动

点击查看相关章节Flink 1.13 源码解析——TaskManager启动流程概览

点击查看相关章节Flink 1.13 源码解析——TaskManager启动流程 之 与ResourceManager的注册交互

目录

一、前言

二、TaskExecutor的构建

2.1、TaskManager基础服务的初始化

2.1.1、BlobCacheService的初始化

2.2、TaskExecutor的构造过程

2.2.3、TaskSlotTable详解

2.2.3、TaskExecutor的初始化

总结:


一、前言

????????在之前的章节中我们分析了Flink主节点(JobManager)的启动流程,在接下来这几章里,我们来从源码入手分析一下Flink从节点的启动流程,TaskManager的启动流程中,有很多步骤和主节点的启动是相同的,他没有主节点中那么多的组件,但是启动的步骤要比主节点繁杂很多,在这一章我们首先来了解TaskManager的初始化流程。

二、TaskExecutor的构建

????????在之前Flink启动脚本分析章节(点此查看 Flink 1.13 源码解析——启动脚本解析)中我们得知,standalone模式下Flink从节点的启动类为org.apache.flink.runtime.taskexecutor.TaskManagerRunner,所以我们直接来看这个类的main方法:

// --------------------------------------------------------------------------------------------
    //  Static entry point
    // --------------------------------------------------------------------------------------------

    public static void main(String[] args) throws Exception {
        // startup checks and logging
        EnvironmentInformation.logEnvironmentInfo(LOG, "TaskManager", args);
        SignalHandler.register(LOG);
        JvmShutdownSafeguard.installAsShutdownHook(LOG);

        long maxOpenFileHandles = EnvironmentInformation.getOpenFileHandlesLimit();

        if (maxOpenFileHandles != -1L) {
            LOG.info("Maximum number of open file descriptors is {}.", maxOpenFileHandles);
        } else {
            LOG.info("Cannot determine the maximum number of open file descriptors");
        }

        // TODO 启动
        runTaskManagerProcessSecurely(args);
    }

在main方法中前几行代码做了一些参数、配置校验的工作,我们直接来看runTaskManagerProcessSecurely方法:

    public static void runTaskManagerProcessSecurely(String[] args) {
        Configuration configuration = null;

        try {
            // TODO 解析args和flink-conf.yaml文件得到配置信息
            configuration = loadConfiguration(args);
        } catch (FlinkParseException fpe) {
            LOG.error("Could not load the configuration.", fpe);
            System.exit(FAILURE_EXIT_CODE);
        }

        // TODO 启动
        runTaskManagerProcessSecurely(checkNotNull(configuration));
    }

该方法依然是我们熟悉的从命令以及flink-conf.yaml文件解析配置,然后将解析后的配置传递给runTaskManagerProcessSecurely方法,我们点进来继续看:

    public static void runTaskManagerProcessSecurely(Configuration configuration) {
        FlinkSecurityManager.setFromConfiguration(configuration);
        // TODO 启动插件管理器
        final PluginManager pluginManager =
                PluginUtils.createPluginManagerFromRootFolder(configuration);
        FileSystem.initialize(configuration, pluginManager);

        int exitCode;
        Throwable throwable = null;

        try {
            SecurityUtils.install(new SecurityConfiguration(configuration));

            exitCode =
                    SecurityUtils.getInstalledContext()
                            // TODO 启动TaskManager
                            .runSecured(() -> runTaskManager(configuration, pluginManager));
        } catch (Throwable t) {
            throwable = ExceptionUtils.stripException(t, UndeclaredThrowableException.class);
            exitCode = FAILURE_EXIT_CODE;
        }

        if (throwable != null) {
            LOG.error("Terminating TaskManagerRunner with exit code {}.", exitCode, throwable);
        } else {
            LOG.info("Terminating TaskManagerRunner with exit code {}.", exitCode);
        }

        System.exit(exitCode);
    }

在该方法里,启动了一个插件管理器,并且执行了一个runTaskManager的方法,通过名字我们不难看出,离TaskManager的构建越来越近了。我们点进runTaskManager方法:

    public static int runTaskManager(Configuration configuration, PluginManager pluginManager)
            throws Exception {
        final TaskManagerRunner taskManagerRunner;

        try {
            // TODO 构建一个TaskManagerRunner
            taskManagerRunner =
                    new TaskManagerRunner(
                            configuration,
                            pluginManager,
                            // TODO 真正创建TaskExecutor的地方
                            TaskManagerRunner::createTaskExecutorService);
            // TODO 启动TaskManagerRunner
            taskManagerRunner.start();
        } catch (Exception exception) {
            throw new FlinkException("Failed to start the TaskManagerRunner.", exception);
        }

        try {
            return taskManagerRunner.getTerminationFuture().get().getExitCode();
        } catch (Throwable t) {
            throw new FlinkException(
                    "Unexpected failure during runtime of TaskManagerRunner.",
                    ExceptionUtils.stripExecutionException(t));
        }
    }

在这个方法里做了两件事:

1、构建了一个TaskManagerRunner

2、启动TaskManagerRunner

实际上,TaskManager启动的所有准备工作,都是在这个TaskManagerRunner中完成的。我们继续进来这个TaskManagerRunner的构造方法来看:

2.1、TaskManager基础服务的初始化

    public TaskManagerRunner(
            Configuration configuration,
            PluginManager pluginManager,
            TaskExecutorServiceFactory taskExecutorServiceFactory)
            throws Exception {
        this.configuration = checkNotNull(configuration);

        timeout = AkkaUtils.getTimeoutAsTime(configuration);

        // TODO TaskManager 内部线程池,用来处理从节点内部各个组件的Io的线程池
        // TODO 线程池大小为当前节点的cpu核心数
        this.executor =
                java.util.concurrent.Executors.newScheduledThreadPool(
                        Hardware.getNumberCPUCores(),
                        new ExecutorThreadFactory("taskmanager-future"));

        // TODO 高可用服务
        highAvailabilityServices =
                HighAvailabilityServicesUtils.createHighAvailabilityServices(
                        configuration,
                        executor,
                        HighAvailabilityServicesUtils.AddressResolution.NO_ADDRESS_RESOLUTION);

        // TODO 1.12 新功能 JMX服务,提供监控信息
        JMXService.startInstance(configuration.getString(JMXServerOptions.JMX_SERVER_PORT));

        // TODO 启动RPC服务,内部为Akka模型的ActorSystem
        rpcService = createRpcService(configuration, highAvailabilityServices);

        // TODO 为TaskManager生成了一个ResourceID
        this.resourceId =
                getTaskManagerResourceID(
                        configuration, rpcService.getAddress(), rpcService.getPort());

        // TODO 初始化心跳服务,主要是初始化心跳间隔和心跳超时参数配置
        HeartbeatServices heartbeatServices = HeartbeatServices.fromConfiguration(configuration);

        metricRegistry =
                new MetricRegistryImpl(
                        MetricRegistryConfiguration.fromConfiguration(configuration),
                        ReporterSetup.fromConfiguration(configuration, pluginManager));

        final RpcService metricQueryServiceRpcService =
                MetricUtils.startRemoteMetricsRpcService(configuration, rpcService.getAddress());
        metricRegistry.startQueryService(metricQueryServiceRpcService, resourceId);

        // TODO 在主节点启动的时候,事实上已经启动了有个BolbServer,
        // TODO 从节点启动的时候,会启动一个BlobCacheService,做文件缓存的服务
        blobCacheService =
                new BlobCacheService(
                        configuration, highAvailabilityServices.createBlobStore(), null);

        final ExternalResourceInfoProvider externalResourceInfoProvider =
                ExternalResourceUtils.createStaticExternalResourceInfoProviderFromConfig(
                        configuration, pluginManager);

        // TODO 创建得到一个TaskExecutorService,内部封装了TaskExecutor,同时TaskExecutor的构建也在内部完成
        taskExecutorService =
                taskExecutorServiceFactory.createTaskExecutor(
                        this.configuration,
                        this.resourceId,
                        rpcService,
                        highAvailabilityServices,
                        heartbeatServices,
                        metricRegistry,
                        blobCacheService,
                        false,
                        externalResourceInfoProvider,
                        this);

        this.terminationFuture = new CompletableFuture<>();
        this.shutdown = false;
        handleUnexpectedTaskExecutorServiceTermination();

        MemoryLogger.startIfConfigured(
                LOG, configuration, terminationFuture.thenAccept(ignored -> {}));
    }

不难看出,这里所做的工作和JobManager启动时一样,是一些基础服务的构建和启动,在这里一共做了以下这些工作:

1、初始化了一个TaskManager内部线程池,用来处理从节点内部各个组件的IO,该线程池的大小为当前节点CPU的核心数。

2、构建了一个高可用服务。

3、初始化JMX服务,用于提供监控信息。

4、启动RPC服务,内部为Akka模型的ActorSystem(点此查看Flink 1.13 源码解析前导——Akka通信模型

4、为TaskManager生成了一个ResourceID。

5、初始化心跳服务,根据配置文件获取心跳间隔时间参数以及心跳超时参数

6、初始化metric服务

7、启动BlobCacheService服务,做文件缓存的服务。

8、构建了一个TaskExecutorService,内部封装了TaskExecutor。

2.1.1、BlobCacheService的初始化

在以上这些基础环境的初始化中,我们首先来看下BlobCacheService服务的初始化,点进BlobCacheService的构造方法:

    public BlobCacheService(
            final Configuration blobClientConfig,
            final BlobView blobView,
            @Nullable final InetSocketAddress serverAddress)
            throws IOException {

        /*
           TODO 初始化了两个文件服务:
           1. 持久化Blob缓存服务
           2. 临时Blob缓存服务
           在这两个服务的内部都会在启动的时候启动一个定时服务
           就是把过期的某个Job的对应资源都删除掉
         */
        this(
                // TODO 持久化
                new PermanentBlobCache(blobClientConfig, blobView, serverAddress),
                // TODO 缓存
                new TransientBlobCache(blobClientConfig, serverAddress));
    }

在这个构造方法里,主要做了两件事:

1、初始化了一个持久化Blob缓存服务

2、初始化了一个临时Blob缓存服务

在这两个服务的内部,都会在启动的时候启动一个定时服务,就是将过期的某个Job的对应资源都删除掉。

我们以持久化Blob缓存服务为例,点进PermanentBlobCache对象的构造方法

    public PermanentBlobCache(
            final Configuration blobClientConfig,
            final BlobView blobView,
            @Nullable final InetSocketAddress serverAddress)
            throws IOException {

        super(
                blobClientConfig,
                blobView,
                LoggerFactory.getLogger(PermanentBlobCache.class),
                serverAddress);

        // Initializing the clean up task
        this.cleanupTimer = new Timer(true);

        // TODO 配置过期时间为1小时
        this.cleanupInterval = blobClientConfig.getLong(BlobServerOptions.CLEANUP_INTERVAL) * 1000;
        // TODO 启动定时任务,每1小时清理一次
        this.cleanupTimer.schedule(
                new PermanentBlobCleanupTask(), cleanupInterval, cleanupInterval);
    }

可以看到,在下面首先配置了一个过期时间,为1小时,接着启动了一个定时服务,每1小时执行一次PermanentBlobCleanupTask,我们继续来看PermanentBlobCleanupTask的run方法

    class PermanentBlobCleanupTask extends TimerTask {
        /** Cleans up BLOBs which are not referenced anymore. */
        @Override
        public void run() {
            // TODO 通过引用计数的方式获取所有Job引用的文件
            synchronized (jobRefCounters) {
                Iterator<Map.Entry<JobID, RefCount>> entryIter =
                        jobRefCounters.entrySet().iterator();
                final long currentTimeMillis = System.currentTimeMillis();

               // TODO 遍历所有文件
                while (entryIter.hasNext()) {
                    Map.Entry<JobID, RefCount> entry = entryIter.next();
                    RefCount ref = entry.getValue();

                    // TODO 判断是否过期
                    if (ref.references <= 0
                            && ref.keepUntil > 0
                            && currentTimeMillis >= ref.keepUntil) {
                        JobID jobId = entry.getKey();

                        final File localFile =
                                new File(
                                        BlobUtils.getStorageLocationPath(
                                                storageDir.getAbsolutePath(), jobId));

                        /*
                         * NOTE: normally it is not required to acquire the write lock to delete the job's
                         *       storage directory since there should be no one accessing it with the ref
                         *       counter being 0 - acquire it just in case, to always be on the safe side
                         */
                        readWriteLock.writeLock().lock();

                        boolean success = false;
                        try {
                            // TODO 删除该资源文件夹
                            FileUtils.deleteDirectory(localFile);
                            success = true;
                        } catch (Throwable t) {
                            log.warn(
                                    "Failed to locally delete job directory "
                                            + localFile.getAbsolutePath(),
                                    t);
                        } finally {
                            readWriteLock.writeLock().unlock();
                        }

                        // let's only remove this directory from cleanup if the cleanup was
                        // successful
                        // (does not need the write lock)
                        if (success) {
                            entryIter.remove();
                        }
                    }
                }
            }
        }
    }

我们可以看到有以下操作:

1、首先在方法里通过引用计数的方式,获取所有job引用的资源文件。

2、遍历这些文件,并判断是否过期。

3、如果过期则删除该资源文件夹。

在临时缓存blob服务中也是一样的工作:

public TransientBlobCache(
            final Configuration blobClientConfig, @Nullable final InetSocketAddress serverAddress)
            throws IOException {

        super(
                blobClientConfig,
                new VoidBlobStore(),
                LoggerFactory.getLogger(TransientBlobCache.class),
                serverAddress);

        // Initializing the clean up task
        this.cleanupTimer = new Timer(true);

        // TODO 1小时
        this.cleanupInterval = blobClientConfig.getLong(BlobServerOptions.CLEANUP_INTERVAL) * 1000;
        this.cleanupTimer.schedule(
                // TODO 定时服务
                new TransientBlobCleanupTask(
                        blobExpiryTimes, readWriteLock.writeLock(), storageDir, log),
                cleanupInterval,
                cleanupInterval);
    }

首先获取超时时间为1小时,接着启动了一个定时服务,每1小时清理一次。

接下来到了重要环节,TaskExecutor的初始化

2.2、TaskExecutor的构造过程

我们点进taskExecutorServiceFactory.createTaskExecutor方法里:

    public static TaskExecutorService createTaskExecutorService(
            Configuration configuration,
            ResourceID resourceID,
            RpcService rpcService,
            HighAvailabilityServices highAvailabilityServices,
            HeartbeatServices heartbeatServices,
            MetricRegistry metricRegistry,
            BlobCacheService blobCacheService,
            boolean localCommunicationOnly,
            ExternalResourceInfoProvider externalResourceInfoProvider,
            FatalErrorHandler fatalErrorHandler)
            throws Exception {

        // TODO 创建TaskExecutor
        final TaskExecutor taskExecutor =
                startTaskManager(
                        configuration,
                        resourceID,
                        rpcService,
                        highAvailabilityServices,
                        heartbeatServices,
                        metricRegistry,
                        blobCacheService,
                        localCommunicationOnly,
                        externalResourceInfoProvider,
                        fatalErrorHandler);

        /*
         TODO 封装了一下TaskExecutor
          TaskExecutor是TaskExecutorToServiceAdapter的成员变量
          TaskExecutorToServiceAdapter是TaskManagerRunner的成员变量
         */

        return TaskExecutorToServiceAdapter.createFor(taskExecutor);
    }

可以看到在这里真正初始化了一个TaskExecutor,并将TaskExecutor封装了一下,我们首先来看TaskExecutor的初始化,我们进入startTaskManager方法:

在该方法内部依然是初始化了一些基础服务:

首先是初始化资源配置,获取硬件资源配置:

 // TODO 初始化资源配置,获取硬件资源配置
 final TaskExecutorResourceSpec taskExecutorResourceSpec =
         TaskExecutorResourceUtils.resourceSpecFromConfig(configuration);

接着获取配置:

// TODO 获取配置(args和flink-conf)
TaskManagerServicesConfiguration taskManagerServicesConfiguration =
        TaskManagerServicesConfiguration.fromConfiguration(
                configuration,
                resourceID,
                externalAddress,
                localCommunicationOnly,
                taskExecutorResourceSpec);

在这里TaskManagerService初始化了一些核心服务:

 // TODO 初始化了一些核心服务
        TaskManagerServices taskManagerServices =
                TaskManagerServices.fromConfiguration(
                        taskManagerServicesConfiguration,
                        blobCacheService.getPermanentBlobService(),
                        taskManagerMetricGroup.f1,
                        ioExecutor,
                        fatalErrorHandler);

我们进入fromConfiguration方法:

public static TaskManagerServices fromConfiguration(
            TaskManagerServicesConfiguration taskManagerServicesConfiguration,
            PermanentBlobService permanentBlobService,
            MetricGroup taskManagerMetricGroup,
            ExecutorService ioExecutor,
            FatalErrorHandler fatalErrorHandler)
            throws Exception {

        // pre-start checks
        checkTempDirs(taskManagerServicesConfiguration.getTmpDirPaths());

        // TODO 状态机  事件分发器
        final TaskEventDispatcher taskEventDispatcher = new TaskEventDispatcher();

        // start the I/O manager, it will create some temp directories.
        final IOManager ioManager =
                new IOManagerAsync(taskManagerServicesConfiguration.getTmpDirPaths());

        // TODO 作业执行期间shuffle相关操作工作,后面讲作业执行时再细聊
        final ShuffleEnvironment<?, ?> shuffleEnvironment =
                createShuffleEnvironment(
                        taskManagerServicesConfiguration,
                        taskEventDispatcher,
                        taskManagerMetricGroup,
                        ioExecutor);
        final int listeningDataPort = shuffleEnvironment.start();

        // TODO state管理服务
        final KvStateService kvStateService =
                KvStateService.fromConfiguration(taskManagerServicesConfiguration);
        kvStateService.start();

        final UnresolvedTaskManagerLocation unresolvedTaskManagerLocation =
                new UnresolvedTaskManagerLocation(
                        taskManagerServicesConfiguration.getResourceID(),
                        taskManagerServicesConfiguration.getExternalAddress(),
                        // we expose the task manager location with the listening port
                        // iff the external data port is not explicitly defined
                        taskManagerServicesConfiguration.getExternalDataPort() > 0
                                ? taskManagerServicesConfiguration.getExternalDataPort()
                                : listeningDataPort);

        // TODO 广播变量管理服务
        final BroadcastVariableManager broadcastVariableManager = new BroadcastVariableManager();

        // TODO TaskExecutor内部,最重要的一个成员变量
        // TODO 一张存放TaskSlot的表
        final TaskSlotTable<Task> taskSlotTable =
                createTaskSlotTable(
                        taskManagerServicesConfiguration.getNumberOfSlots(),
                        taskManagerServicesConfiguration.getTaskExecutorResourceSpec(),
                        taskManagerServicesConfiguration.getTimerServiceShutdownTimeout(),
                        taskManagerServicesConfiguration.getPageSize(),
                        ioExecutor);

        final JobTable jobTable = DefaultJobTable.create();

        // TODO 监控主节点Leader地址
        final JobLeaderService jobLeaderService =
                new DefaultJobLeaderService(
                        unresolvedTaskManagerLocation,
                        taskManagerServicesConfiguration.getRetryingRegistrationConfiguration());

        。。。 。。。

        return new TaskManagerServices(
                unresolvedTaskManagerLocation,
                taskManagerServicesConfiguration.getManagedMemorySize().getBytes(),
                ioManager,
                shuffleEnvironment,
                kvStateService,
                broadcastVariableManager,
                taskSlotTable,
                jobTable,
                jobLeaderService,
                taskStateManager,
                taskEventDispatcher,
                ioExecutor,
                libraryCacheManager);
    }

在这里,初始化了事件分发起、IOManager、ShuffleEnvironment、state管理服务、广播变量历服务、TaskSlotJobManager的Leader地址监控服务等等,这里我们着重看一下TableSlot表,其他的核心服务我们会在后续Job的执行流程、Slot分配流程中详细描述,这里就先不聊了。

2.2.3、TaskSlotTable详解

首先在TaskSlotTable,是TaskExecutor中非常非常重要的一个成员变量,它是真正帮助TaskExecutor完成一切和Slot有关操作的组件,在ResourceManager中,也有一个类似的组件,就是在注册的两个定时任务中的其中一个:slot定时任务SlotManager。(点击查看Flink 1.13 源码解析——JobManager启动流程之ResourceManager启动

在JobMaster申请资源时,是ResourceManager中的SlotManager来完成资源分配的,在完成资源分配后,SlotManager会向TaskExecutor发送RPC请求,然后TaskExecutor再向ResourceManager去做汇报表示已完成分配。我们来看TaskSlotTable的实现类,其中有几个十分重要的变量:

/** The list of all task slots. */
    // TODO 所有的slot
    // TODO 在TaskManager启动时会将自身的slot汇报给ResourceManager,并将slot封装为taskSlot
    private final Map<Integer, TaskSlot<T>> taskSlots;

    /** Mapping from allocation id to task slot. */
    // TODO 所有已被分配的slot,维护着分配ID和TaskSlot之间的关系
    private final Map<AllocationID, TaskSlot<T>> allocatedSlots;

其中taskSlots存放着所有的当前节点的slot,在当前节点的TaskManager启动时,会将自身的slot汇报给ResourceManager,并将slot封装为taskSlot。

而allocatedSlots存放这所有已被分配的slot的信息,维护着分配ID和TaskSlot之间的关系。

2.2.3、TaskExecutor的初始化

我们继续回到TaskManagerRunner.startTaskManager方法,看最后一步,初始化TaskExecutor,我们点进TaskExecutor的构造方法,首先看到TaskExecutor继承自RPCEndpoint,那么我们就知道,当TaskExecutor初始化完成之后回去调用自身 的onStart方法(点击查看Flink 1.13 源码解析前导——Akka通信模型),此刻还在初始化之中,所以我们先继续往下看

    public TaskExecutor(
            RpcService rpcService,
            TaskManagerConfiguration taskManagerConfiguration,
            HighAvailabilityServices haServices,
            TaskManagerServices taskExecutorServices,
            ExternalResourceInfoProvider externalResourceInfoProvider,
            HeartbeatServices heartbeatServices,
            TaskManagerMetricGroup taskManagerMetricGroup,
            @Nullable String metricQueryServiceAddress,
            BlobCacheService blobCacheService,
            FatalErrorHandler fatalErrorHandler,
            TaskExecutorPartitionTracker partitionTracker) {

        // TaskExecutor为RPCEndpoint的子类,这个构造器调用的RPCEndpoint的构造器
        super(rpcService, AkkaRpcServiceUtils.createRandomName(TASK_MANAGER_NAME));

        checkArgument(
                taskManagerConfiguration.getNumberSlots() > 0,
                "The number of slots has to be larger than 0.");

        this.taskManagerConfiguration = checkNotNull(taskManagerConfiguration);
        this.taskExecutorServices = checkNotNull(taskExecutorServices);
        this.haServices = checkNotNull(haServices);
        this.fatalErrorHandler = checkNotNull(fatalErrorHandler);
        this.partitionTracker = partitionTracker;
        this.taskManagerMetricGroup = checkNotNull(taskManagerMetricGroup);
        this.blobCacheService = checkNotNull(blobCacheService);
        this.metricQueryServiceAddress = metricQueryServiceAddress;
        this.externalResourceInfoProvider = checkNotNull(externalResourceInfoProvider);

        this.libraryCacheManager = taskExecutorServices.getLibraryCacheManager();
        this.taskSlotTable = taskExecutorServices.getTaskSlotTable();
        this.jobTable = taskExecutorServices.getJobTable();
        this.jobLeaderService = taskExecutorServices.getJobLeaderService();
        this.unresolvedTaskManagerLocation =
                taskExecutorServices.getUnresolvedTaskManagerLocation();
        this.localStateStoresManager = taskExecutorServices.getTaskManagerStateStore();
        this.shuffleEnvironment = taskExecutorServices.getShuffleEnvironment();
        this.kvStateService = taskExecutorServices.getKvStateService();
        this.ioExecutor = taskExecutorServices.getIOExecutor();
        this.resourceManagerLeaderRetriever = haServices.getResourceManagerLeaderRetriever();

        this.hardwareDescription =
                HardwareDescription.extractFromSystem(taskExecutorServices.getManagedMemorySize());
        this.memoryConfiguration =
                TaskExecutorMemoryConfiguration.create(taskManagerConfiguration.getConfiguration());

        this.resourceManagerAddress = null;
        this.resourceManagerConnection = null;
        this.currentRegistrationTimeoutId = null;

        final ResourceID resourceId =
                taskExecutorServices.getUnresolvedTaskManagerLocation().getResourceID();

        // TODO 初始化了两个心跳管理器
        // TODO TaskExecutor维持和JobMaster的心跳
        this.jobManagerHeartbeatManager =
                createJobManagerHeartbeatManager(heartbeatServices, resourceId);
        // TODO TaskExecutor维持和ResourceManager的心跳
        this.resourceManagerHeartbeatManager =
                createResourceManagerHeartbeatManager(heartbeatServices, resourceId);

        ExecutorThreadFactory sampleThreadFactory =
                new ExecutorThreadFactory.Builder()
                        .setPoolName("flink-thread-info-sampler")
                        .build();
        ScheduledExecutorService sampleExecutor =
                Executors.newSingleThreadScheduledExecutor(sampleThreadFactory);
        this.threadInfoSampleService = new ThreadInfoSampleService(sampleExecutor);
    }

在前半部分进行的一些变量的赋值,在下面初始化了两个心跳管理器,分别为:

1、TaskExecutor维持和JobMaster的心跳的管理器

2、TaskExecutor维持和ResourceManager心跳的管理器

在心跳管理器内部初始化了一个HeartbeatManagerImpl对象,还记得我们在ResourceManager中初始化的心跳管理器为HeartbeatManagerSenderImpl,根据名字能看出这是一个心跳请求发送器,也是在ResourceManager那一章节中我们讲到,在HeartbeatManagerSenderImpl中会有一个定时任务,每10秒钟遍历一次所有的已注册的心跳目标对象,并向每个对象发送心跳请求(点击查看Flink 1.13 源码解析——JobManager启动流程之ResourceManager启动

public <I, O> HeartbeatManager<I, O> createHeartbeatManager(
            ResourceID resourceId,
            HeartbeatListener<I, O> heartbeatListener,
            ScheduledExecutor mainThreadExecutor,
            Logger log) {

        /*
         TODO
         主节点中的心跳管理器为HeartbeatManagerSenderImpl 心跳请求发送器 client
                在HeartbeatManagerSenderImpl内部构建了一个定时服务
                每10秒 向所有的心跳目标对象,发送心跳请求
         从节点(当前)为HeartbeatManagerImpl 心跳请求处理器 Server
         */
        return new HeartbeatManagerImpl<>(
                heartbeatTimeout, resourceId, heartbeatListener, mainThreadExecutor, log);
    }

到此为止,我们的TaskExecutor的正式初始化完成。

总结:

我们在这里总结一下TaskExecutor的初始化流程:

1、首先构建了一个TaskManagerRunner,用于完成TaskManager启动的准备工作,再完成准备工作后,通过调用TaskManagerRunner的start方法来启动。

2、在TaskManagerRunner内部初始化了一个TaskManagerService对象,用来初始化TaskExecutor所需要的基础服务。

3、在TaskManagerService内部,首先会初始化一些基础服务,如TaskEvent Dispatcher、IO管理器、shuffleEnvironment、state管理器、TaskSlotTable等等。

4、在完成基础服务的初始化之后,开始初始化TaskExecutor,首先初始化了两个心跳管理期,分别来维护和JobMaster、ResourceManager的心跳。因为TaskExecutor继承了RpcEndpoint,所以具有生命周期方法onStart。

5、TaskExecutor初始化完成。

在下一章里我们来看已经初始化完成的TaskExecutor的启动流程。

下一章: Flink 1.13 源码解析——TaskManager启动流程概览

  大数据 最新文章
实现Kafka至少消费一次
亚马逊云科技:还在苦于ETL?Zero ETL的时代
初探MapReduce
【SpringBoot框架篇】32.基于注解+redis实现
Elasticsearch:如何减少 Elasticsearch 集
Go redis操作
Redis面试题
专题五 Redis高并发场景
基于GBase8s和Calcite的多数据源查询
Redis——底层数据结构原理
上一篇文章      下一篇文章      查看所有文章
加:2022-09-04 01:18:22  更:2022-09-04 01:22:06 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/16 0:09:22-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码