| |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
-> 大数据 -> 猿创征文 | 微服务 Spring Boot 整合Redis 实战开发解决缓存穿透、缓存雪崩、缓存击穿 -> 正文阅读 |
|
[大数据]猿创征文 | 微服务 Spring Boot 整合Redis 实战开发解决缓存穿透、缓存雪崩、缓存击穿 |
文章目录一、什么是缓存穿透、缓存雪崩、缓存击穿?缓存穿透: 缓存穿透是指客户端请求的数据在缓存中和数据库中都不存在,这样缓存永远不会生效,这些请求都会打到数据库。 缓存雪崩:缓存雪崩是指在同一时段大量的缓存key同时失效或者Redis服务宕机,导致大量请求到达数据库,带来巨大压力。 缓存击穿: 缓存击穿问题也叫热点Key问题,就是一个被高并发访问并且缓存重建业务较复杂的key突然失效了,无数的请求访问会在瞬间给数据库带来巨大的冲击。 缓存穿透、缓存雪崩、缓存击穿都是 Redis中比较常见的场景,同时也是面试高频必问点,很有意思,Redis 不是一般的强! 三、缓存的更新策略缓存更新是redis为了节约内存而设计出来的一个东西,主要是因为内存数据宝贵,当我们向redis插入太多数据,此时就可能会导致缓存中的数据过多,所以redis会对部分数据进行更新,或者把他叫为淘汰更合适。 三种更新策略
?数据库与内存不一致的解决方案由于我们的缓存的数据源来自于数据库,而数据库的数据是会发生变化的,因此,如果当数据库中数据发生变化,而缓存却没有同步,此时就会有一致性问题存在, 其后果是:用户使用缓存中的过时数据,就会产生类似多线程数据安全问题,从而影响业务,产品口碑等;怎么解决呢? 有如下几种方案
Read/Write Through Pattern : 由系统本身完成,数据库与缓存的问题交由系统本身去处理 Write Behind Caching Pattern :调用者只操作缓存,其他线程去异步处理数据库,实现最终一致 ?数据库与内存不一致应该采用什么方案综合考虑使用方案一,但是方案一调用者如何处理呢?这里有几个问题 操作缓存和数据库时有三个问题需要考虑: 如果采用第一个方案,那么假设我们每次操作数据库后,都操作缓存,但是中间如果没有人查询,那么这个更新动作实际上只有最后一次生效,中间的更新动作意义并不大,我们可以把缓存删除,等待再次查询时,将缓存中的数据加载出来
应该具体操作缓存还是操作数据库,我们应当是先操作数据库,再删除缓存,原因在于,如果你选择第一种方案,在两个线程并发来访问时,假设线程1先来,他先把缓存删了,此时线程2过来,他查询缓存数据并不存在,此时他写入缓存,当他写入缓存后,线程1再执行更新动作时,实际上写入的就是旧的数据,新的数据被旧数据覆盖了。
修改数据时,先修改数据库,再删除缓存,即可达到双写一致性
四、实战开发解决缓存穿透、缓存雪崩、缓存击穿??缓存穿透解决方案缓存穿透:缓存穿透是指客户端请求的数据在缓存中和数据库中都不存在,这样缓存永远不会生效,这些请求都会打到数据库。 缓存穿透常见解决方案:
当我们客户端访问不存在的数据时,先请求redis,但是此时redis中没有数据,此时会访问到数据库,但是数据库中也没有数据,这个数据穿透了缓存,直击数据库,我们都知道数据库能够承载的并发不如redis这么高,如果大量的请求同时过来访问这种不存在的数据,这些请求就都会访问到数据库,简单的解决方案就是哪怕这个数据在数据库中也不存在,我们也把这个数据存入到redis中去,这样,下次用户过来访问这个不存在的数据,那么在redis中也能找到这个数据就不会进入到数据库了
布隆过滤器其实采用的是哈希思想解决的这个问题,通过一个庞大的二进制数组,走哈希思想去判断当前这个要查询的这个数据是否存在,如果布隆过滤器存在,则放行,这个请求会直接去请求redis,哪怕是此时redis中数据过期了,但是数据库中一定存在这个数据,在数据库查询出来这个数据,再存入redis 假设布隆过滤器判断这个数据不存在,则直接返回。 这种优点在于节约空间,存在误判的可能, 原因在于:布隆过滤器走的是哈希思想,只要哈希思想,就可能出现哈希冲突
思路:如果要查询的数据不存在,那么还是要把它写入redis,并且把redis值设置为空,当再次发起请求时,我们判断如果命中不等于null,那么就是缓存值,直接返回null,提升信息不存在即可,反之,则存入redis数据库,并设置过期时间。
??缓存雪崩解决方案缓存雪崩:缓存雪崩是指在同一时段大量的缓存key同时失效或者Redis服务宕机,导致大量请求到达数据库,带来巨大压力。 解决方案:
缓存雪崩,最常用的就是我们设置redis中的key的过期时间,设置随机一点,防止大面积key失效 为Redis添加集群,主从复制,哨兵模式等 具体可参考: Redis 进阶 – 搭建主从复制及哨兵模式集群 ?缓存击穿解决方案缓存击穿:缓存击穿问题也叫热点Key问题,就是一个被高并发访问并且缓存重建业务较复杂的key突然失效了,无数的请求访问会在瞬间给数据库带来巨大的冲击。 常见的解决方案有两种:
逻辑分析: 假设线程1在查询缓存之后,本来应该去查询数据库,然后把这个数据重新加载到缓存的,此时只要线程1走完这个逻辑,其他线程就都能从缓存中加载这些数据了,但是假设在线程1没有走完的时候,后续的线程2,线程3,线程4同时过来访问当前这个方法, 那么这些线程都不能从缓存中查询到数据,那么它们就会同一时刻来访问查询缓存,都没查到,接着同一时间去访问数据库,同时的去执行数据库代码,对数据库访问压力过大 解决方案一:互斥锁解决 因为锁能实现互斥性。假设线程过来,只能一个人一个人的来访问数据库,从而避免对于数据库访问压力过大,但这也会影响查询的性能,因为此时会让查询的性能从并行变成了串行,我们可以采用tryLock方法 + double check来解决这样的问题。 假设现在线程1过来访问,他查询缓存没有命中,但是此时他获得到了锁的资源,那么线程1就会一个人去执行逻辑,假设现在线程2过来,线程2在执行过程中,并没有获得到锁,那么线程2就可以进行到休眠,直到线程1把锁释放后,线程2获得到锁,然后再来执行逻辑,此时就能够从缓存中拿到数据了。 解决方案二:逻辑过期方案 之所以会出现这个缓存击穿问题,主要原因是在于我们对key设置了过期时间,假设我们不设置过期时间,其实就不会有缓存击穿的问题,但是不设置过期时间,这样数据不就一直占用我们内存了吗,我们可以采用逻辑过期方案。 我们把过期时间设置在 redis的value中,注意:这个过期时间并不会直接作用于redis,而是我们后续通过逻辑去处理。 假设线程1去查询缓存,然后从value中判断出来当前的数据已经过期了,此时线程1去获得互斥锁,那么其他线程会进行阻塞,获得了锁的线程他会开启一个 线程去进行 以前的重构数据的逻辑,直到新开的线程完成这个逻辑后,才释放锁, 而线程1直接进行返回,假设现在线程3过来访问,由于线程线程2持有着锁,所以线程3无法获得锁,线程3也直接返回数据,只有等到新开的线程2把重建数据构建完后,其他线程才能走返回正确的数据。 这种方案巧妙在于,异步的构建缓存,缺点在于在构建完缓存之前,返回的都是脏数据。 类似于逻辑删除
互斥锁方案: 由于保证了互斥性,所以数据一致,且实现简单,因为仅仅只需要加一把锁而已,也没其他的事情需要操心,所以没有额外的内存消耗,缺点在于有锁就有死锁问题的发生,且只能串行执行性能肯定受到影响 逻辑过期方案: 线程读取过程中不需要等待,性能好,有一个额外的线程持有锁去进行重构数据,但是在重构数据完成前,其他的线程只能返回之前的数据,且实现起来麻烦。
相较于原来从缓存中查询不到数据后直接查询数据库而言,现在的方案是 进行查询之后,如果从缓存没有查询到数据,则进行互斥锁的获取,获取互斥锁后,判断是否获得到了锁,如果没有获得到,则休眠,过一会再进行尝试,直到获取到锁为止,才能进行查询 如果获取到了锁的线程,再去进行查询,查询后将数据写入redis,再释放锁,返回数据,利用互斥锁就能保证只有一个线程去执行操作数据库的逻辑,防止缓存击穿 操作锁的代码: 核心思路就是利用redis的setnx方法来表示获取锁,该方法含义是redis中如果没有这个key,则插入成功,返回1,在stringRedisTemplate中返回true, 如果有这个key则插入失败,则返回0,在stringRedisTemplate返回false,我们可以通过true,或者是false,来表示是否有线程成功插入key,成功插入的key的线程我们认为他就是获得到锁的线程。
缓存穿透核心解决 互斥锁代码
思路分析: 当用户开始查询redis时,判断是否命中,如果没有命中则直接返回空数据,不查询数据库,而一旦命中后,将value取出,判断value中的过期时间是否满足,如果没有过期,则直接返回redis中的数据,如果过期,则在开启独立线程后直接返回之前的数据,独立线程去重构数据,重构完成后释放互斥锁。
五、使用 Apache Jmeter对缓存击穿 进行压力测试缓存击穿也叫做热点key 数据,我们使用压力测试工具对其进行测试。 Jmeter是一个测试工具,主要用来进行压力测试
我们使用Jmeter对接口进行压力测试,下载Jmeter Jmeter官网 选择下载绿色解压版,下载完成后进行解压即可
双击 bin 目录下 的 jmeter.bat 启动 Jmeter 设置语言为中文显示 进入界面,新建测试计划 --> 右击新建线程组 设置线程组参数 添加http请求 右击http请求添加监视器 结果树 与 汇报 查看结果即可,吞吐量达到了 89/s, 偏差 232 还可以,基本差不多 100左右的QPS 六、封装工具类为了方便后期更多的业务需要做缓存穿透、击穿 我们将其封装为工具类,减少了不必要的代码,以及增加了可扩展性 工具类代码已上传,需要自取: 工具类代码 替换后自行测试即可。 ?小结以上就是【Bug 终结者】对 猿创征文 微服务 Spring Boot 整合Redis 实战开发解决缓存穿透、缓存雪崩、缓存击穿 的简单介绍,缓存是我们比较常用的技术,在解决一些高并发场景下,我们巧妙的使用缓存可以极大的减轻服务器的压力,
|
|
|
上一篇文章 下一篇文章 查看所有文章 |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 | -2025/1/15 23:29:10- |
|
网站联系: qq:121756557 email:121756557@qq.com IT数码 |