IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 移动开发 -> 干了5Android开发还没掌握-binder-机制、驱动核心源码?我劝你早点改行吧 -> 正文阅读

[移动开发]干了5Android开发还没掌握-binder-机制、驱动核心源码?我劝你早点改行吧

bwr.read_consumed = 0;
if (copy_to_user(ubuf, &bwr, sizeof(bwr)))
ret = -EFAULT;
goto out;
}
}
if (bwr.read_size > 0) {//读数据
ret = binder_thread_read(proc, thread, bwr.read_buffer,
bwr.read_size,
&bwr.read_consumed,
filp->f_flags & O_NONBLOCK);
trace_binder_read_done(ret);
if (!list_empty(&proc->todo))
//唤醒等待状态的线程
wake_up_interruptible(&proc->wait);
if (ret < 0) { //读失败
if (copy_to_user(ubuf, &bwr, sizeof(bwr)))
ret = -EFAULT;
goto out;
}
}

可见 binder 驱动内部依赖用户空间的 binder_write_read 决定是要读取还是写入数据:其内部变量 read_size>0 则代表要读取数据,write_size>0 代表要写入数据,若都大于 0 则先写入,后读取。

至此焦点应该集中在 binder_thread_write() 和 binder_thread_read(),下面分析这两个方法。

4.binder_thread_write

在上面的 binder_ioctl_write_read() 方法中调用 binder_thread_write() 时传入了 bwr.write_buffer、bwr.write_size 等,先搞清楚这些参数是什么。

最开始是在用户空间 IPCThreadState 的 transact() 中通过 writeTransactionData() 方法创建数据并写入 mOut 的,writeTransactionData 方法代码如下:

status_t IPCThreadState::writeTransactionData(int32_t cmd, uint32_t binderFlags,
int32_t handle, uint32_t code, const Parcel& data, status_t* statusBuffer){
binder_transaction_data tr; //到驱动内部后会取出此结构体进行处理
tr.target.ptr = 0;
tr.target.handle = handle; //目标 server 的 binder 的句柄
//请求码,getService() 服务对应的是 GET_SERVICE_TRANSACTION
tr.code = code;
tr.flags = binderFlags;
tr.cookie = 0;
tr.sender_pid = 0;
tr.sender_euid = 0;
const status_t err = data.errorCheck(); //验证数据合理性
if (err == NO_ERROR) {
tr.data_size = data.ipcDataSize(); //传输数据大小
tr.data.ptr.buffer = data.ipcData(); //传输数据
tr.offsets_size = data.
ipcObjectsCount()*sizeof(binder_size_t);
tr.data.ptr.offsets = data.ipcObjects();
} else {…}
mOut.writeInt32(cmd); // transact 传入的 cmd 是 BC_TRANSACTION
mOut.write(&tr, sizeof(tr)); //打包成 binder_transaction_data
return NO_ERROR;
}

然后在 IPCThreadState 的 talkWithDriver() 方法中对 write_buffer 赋值:

bwr.write_buffer?=?(uintptr_t)mOut.data();

搞清楚了数据的来源,再来看 binder_thread_write() 方法,binder_thread_write() 方法中处理了大量的 BC_XXX 命令,代码很长,这里我们只关注当前正在处理的 BC_TRANSACTION 命令,简化后代码如下:

static int binder_thread_write(struct binder_proc *proc,
struct binder_thread *thread,
binder_uintptr_t binder_buffer, size_t size,
binder_size_t *consumed){
uint32_t cmd;
void __user *buffer = (void __user *)(uintptr_t)binder_buffer;
void __user *ptr = buffer + *consumed; //数据起始地址
void __user *end = buffer + size; //数据结束地址
//可能有多个命令及对应数据要处理,所以要循环
while (ptr < end && thread->return_error == BR_OK) {
if (get_user(cmd, (uint32_t __user *)ptr)) // 读取一个 cmd
return -EFAULT;
//跳过 cmd 所占的空间,指向要处理的数据
ptr += sizeof(uint32_t);
switch (cmd) {
case BC_TRANSACTION:
case BC_REPLY: {
//与 writeTransactionData 中准备的数据结构体对应
struct binder_transaction_data tr;
//拷贝到内核空间 tr 中
if (copy_from_user(&tr, ptr, sizeof(tr)))
return -EFAULT;
//跳过数据所占空间,指向下一个 cmd
ptr += sizeof(tr);
//处理数据
binder_transaction(proc, thread, &tr, cmd == BC_REPLY);
break;
}
处理其他 BC_XX 命令…
}
//被写入处理消耗的数据量,对应于用户空间的 bwr.write_consumed
*consumed = ptr - buffer;

binder_thread_write() 中从 bwr.write_buffer 中取出了 cmd 和 cmd 对应的数据,进一步交给 binder_transaction() 处理,需要注意的是,BC_TRANSACTION、BC_REPLY 这两个命令都是由 binder_transaction() 处理的。

简单梳理一下,由 binder_ioctl -> binder_ioctl_write_read -> binder_thread_write ,到目前为止还只是在准备数据,没有看到跟目标进程相关的任何处理,都属于 “准备数据,根据命令分发给具体的方法去处理” 第 1 个工作。

而到此为止,第 1 个工作便结束,下一步的 binder_transaction() 方法终于要开始后面的工作了。

5.binder_transaction

binder_transaction() 方法中代码较长,先总结它干了哪些事:对应开头列出的工作,此方法中做了非常关键的 2-4 步:

  1. 找到目标进程的相关信息
  2. 将数据一次拷贝到目标进程所映射的物理内存块
  3. 记录待处理的任务,唤醒目标线程

以这些工作为线索,将代码分为对应的部分来看,首先是**「找到目标进程的相关信息」**,简化后代码如下:

static void binder_transaction(struct binder_proc *proc,
struct binder_thread *thread,
struct binder_transaction_data *tr, int reply){
struct binder_transaction *t; //用于描述本次 server 端要进行的 transaction
struct binder_work *tcomplete; //用于描述当前调用线程未完成的 transaction
binder_size_t *offp, *off_end;
struct binder_proc *target_proc; //目标进程
struct binder_thread *target_thread = NULL; //目标线程
struct binder_node *target_node = NULL; //目标 binder 节点
struct list_head *target_list; //目标 TODO 队列
wait_queue_head_t *target_wait; //目标等待队列
if(reply){
in_reply_to = thread->transaction_stack;
…处理 BC_REPLY,暂不关注
}else{
//处理 BC_TRANSACTION
if (tr->target.handle) { //handle 不为 0
struct binder_ref *ref;
//根据 handle 找到目标 binder 实体节点的引用
ref = binder_get_ref(proc, tr->target.handle);
target_node = ref->node; //拿到目标 binder 节点
} else {
// handle 为 0 则代表目标 binder 是 service manager
// 对于本次调用来说目标就是 service manager
target_node = binder_context_mgr_node;
}
}
target_proc = target_node->proc; //拿到目标进程
if (!(tr->flags & TF_ONE_WAY) && thread->transaction_stack) {
struct binder_transaction *tmp;
tmp = thread->transaction_stack;
while (tmp) {
if (tmp->from && tmp->from->proc == target_proc)
target_thread = tmp->from; //拿到目标线程
tmp = tmp->from_parent;
}
}
target_list = &target_thread->todo; //拿到目标 TODO 队列
target_wait = &target_thread->wait; //拿到目标等待队列

binder_transaction、binder_work 等结构体在上一篇中有介绍,上面代码中也详细注释了它们的含义。比较关键的是 binder_get_ref() 方法,它是如何找到目标 binder 的呢?这里暂不延伸,下文再做分析。

继续看 binder_transaction() 方法的第 2 个工作,「将数据一次拷贝到目标进程所映射的物理内存块」

t = kzalloc(sizeof(*t), GFP_KERNEL); //创建用于描述本次 server 端要进行的 transaction
tcomplete = kzalloc(sizeof(*tcomplete), GFP_KERNEL); //创建用于描述当前调用线程未完成的 transaction
if (!reply && !(tr->flags & TF_ONE_WAY)) //将信息记录到 t 中:
t->from = thread; //记录调用线程
else
t->from = NULL;
t->sender_euid = task_euid(proc->tsk);
t->to_proc = target_proc; //记录目标进程
t->to_thread = target_thread; //记录目标线程
t->code = tr->code; //记录请求码,getService() 对应的是 GET_SERVICE_TRANSACTION
t->flags = tr->flags;
//实际申请目标进程所映射的物理内存,准备接收要传输的数据
t->buffer = binder_alloc_buf(target_proc, tr->data_size,
tr->offsets_size, !reply && (t->flags & TF_ONE_WAY));
//申请到 t->buffer 后,从用户空间将数据拷贝进来,这里就是一次拷贝数据的地方!!
if (copy_from_user(t->buffer->data, (const void __user *)(uintptr_t)
tr->data.ptr.buffer, tr->data_size)) {
return_error = BR_FAILED_REPLY;
goto err_copy_data_failed;
}

为什么在拷贝之前要先申请物理内存呢?之前介绍 binder_mmap() 方法时详细分析过,虽然 binder_mmap() 直接映射了 (1M-8K) 的虚拟内存,但却只申请了 1 页的物理页面,等到实际使用时再动态申请。也就是说,在 binder_ioctl() 实际传输数据的时候,再通过 binder_alloc_buf() 方法去申请物理内存。

至此已经将要传输的数据拷贝到目标进程,目标进程可以直接读取到了,接下来要做的就是将目标进程要处理的任务记录起来,然后唤醒目标进程,这样在目标进程被唤醒后,才能知道要处理什么任务。

最后来看 binder_transaction() 方法的第 3 个工作,「记录待处理的任务,唤醒目标线程」

if (reply) { //如果是处理 BC_REPLY,pop 出来栈顶记录的 transaction(实际上是删除链表头元素)
binder_pop_transaction(target_thread, in_reply_to);
} else if (!(t->flags & TF_ONE_WAY)) {
//如果不是 oneway,将 server 端要处理的 transaction 记录到当前调用线程
t->need_reply = 1;
t->from_parent = thread->transaction_stack;
thread->transaction_stack = t;
} else {
…暂不关注 oneway 的情况
}
t->work.type = BINDER_WORK_TRANSACTION;
list_add_tail(&t->work.entry, target_list); //加入目标的处理队列中
tcomplete->type = BINDER_WORK_TRANSACTION_COMPLETE; //设置调用线程待处理的任务类型
list_add_tail(&tcomplete->entry, &thread->todo); //记录调用线程待处理的任务
if (target_wait)
wake_up_interruptible(target_wait); //唤醒目标线程

再次梳理一下,至此已经完成了前四个工作:

  1. 准备数据,根据命令分发给具体的方法去处理
  2. 找到目标进程的相关信息
  3. 将数据一次拷贝到目标进程所映射的物理内存块
  4. 记录待处理的任务,唤醒目标线程

其中第 1 个工作涉及到的方法为 binder_ioctl() -> binder_get_thread() -> binder_ioctl_write_read() ?-> binder_thread_write() ,主要是一些数据的准备和方法转跳,没做什么实质的事情。而 binder_transaction() ?方法中做了非常重要的 2-4 工作。

剩下的工作还有:

  1. 调用线程进入休眠
  2. 目标进程直接拿到数据进行处理,处理完后唤醒调用线程
  3. 调用线程返回处理结果

可以想到,5 和 6 其实没有时序上的限制,而是并行处理的。下面先来看第 5 个工作:调用线程是如何进入休眠等待服务端执行结果的。

6.binder_thread_read

在唤醒目标线程后,调用线程就执行完 binder_thread_write() 写完了数据,返回到 binder_ioctl_write_read() 方法中,接着执行 binder_thread_read() 方法。

而调用线程的休眠就是在此方法中触发的,下面将 binder_thread_read() 分为两部分来看,首先是是否阻塞当前线程的判断逻辑:

static int binder_thread_read(struct binder_proc *proc,
struct binder_thread *thread,
binder_uintptr_t binder_buffer, size_t size,
binder_size_t *consumed, int non_block){
void __user *buffer = (void __user *)(uintptr_t)binder_buffer; //bwr.read_buffer
void __user *ptr = buffer + *consumed; //数据起始地址
void __user *end = buffer + size; //数据结束地址
if (*consumed == 0) {
if (put_user(BR_NOOP, (uint32_t __user *)ptr))
return -EFAULT;
ptr += sizeof(uint32_t);
}
//是否要准备睡眠当前线程
wait_for_proc_work = thread->transaction_stack == NULL &&
list_empty(&thread->todo);
if (wait_for_proc_work) {
if (non_block) { //non_block 为 false
if (!binder_has_proc_work(proc, thread))
ret = -EAGAIN;
} else
ret = wait_event_freezable_exclusive(proc->wait,
binder_has_proc_work(proc, thread));
} else {
if (non_block) { //non_block 为 false
if (!binder_has_thread_work(thread))
ret = -EAGAIN;
} else
ret = wait_event_freezable(thread->wait,
binder_has_thread_work(thread));
}

consumed 即用户空间的 bwr.read_consumed,这里是 0 ,所以将一个 BR_NOOP 加到了 ptr 中。

怎么理解 wait_for_proc_work 条件呢?在 binder_transaction() 方法中将 server 端要处理的 transaction 记录到了当前调用线程 thread->transaction_stack 中;将当前调用线程待处理的任务记录到了 thread->todo 中。

所以这里的 thread->transaction_stack 和 thread->todo 都不为空,wait_for_proc_work 为 false,代表不准备阻塞当前线程。

但 wait_for_proc_work 并不是决定是否睡眠的最终条件,接着往下看,其中 non_block 恒为 false,那是否要睡眠当前线程就取决于 binder_has_thread_work() 的返回值,binder_has_thread_work() 方法如下:

static int binder_has_thread_work(struct binder_thread *thread){
return !list_empty(&thread->todo) || thread->return_error != BR_OK ||
(thread->looper & BINDER_LOOPER_STATE_NEED_RETURN);
}

thread->todo 不为空,所以 binder_has_thread_work() 返回 true,当前调用线程不进入休眠,继续往下执行。你可能会有疑问,不是说调用线程的休眠就是在 binder_thread_read() 方法中触发的吗?确实是,只不过不是本次,先接着分析 binder_thread_read() 继续往下要执行的逻辑:

struct binder_work *w;
w = list_first_entry(&thread->todo, struct binder_work,entry);
switch (w->type) {
case BINDER_WORK_TRANSACTION_COMPLETE: {
cmd = BR_TRANSACTION_COMPLETE;
if (put_user(cmd, (uint32_t __user *)ptr))
return -EFAULT;
ptr += sizeof(uint32_t);
binder_stat_br(proc, thread, cmd);
list_del(&w->entry); //删除 binder_work 在 thread->todo 中的引用
kfree(w);
}
case BINDER_WORK_NODE{…}
case BINDER_WORK_DEAD_BINDER{…}

在上面 binder_transaction() 方法最后,将 BINDER_WORK_TRANSACTION_COMPLETE 类型的 binder_work 加入到 thread->todo 中。而这里就是对这个 binder_work 进行处理,将一个 BR_TRANSACTION_COMPLETE 命令加到了 ptr 中。

梳理一下目前的逻辑,至此已经顺序执行完 binder_thread_write()、binder_thread_read() 方法,并且在 binder_thread_read() 中往用户空间传输了两个命令:BR_NOOP 和 BR_TRANSACTION_COMPLETE。

inder_transaction() 方法最后,将 BINDER_WORK_TRANSACTION_COMPLETE 类型的 binder_work 加入到 thread->todo 中。而这里就是对这个 binder_work 进行处理,将一个 BR_TRANSACTION_COMPLETE 命令加到了 ptr 中。

梳理一下目前的逻辑,至此已经顺序执行完 binder_thread_write()、binder_thread_read() 方法,并且在 binder_thread_read() 中往用户空间传输了两个命令:BR_NOOP 和 BR_TRANSACTION_COMPLETE。

  移动开发 最新文章
Vue3装载axios和element-ui
android adb cmd
【xcode】Xcode常用快捷键与技巧
Android开发中的线程池使用
Java 和 Android 的 Base64
Android 测试文字编码格式
微信小程序支付
安卓权限记录
知乎之自动养号
【Android Jetpack】DataStore
上一篇文章      下一篇文章      查看所有文章
加:2022-01-28 12:02:03  更:2022-01-28 12:02:05 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/24 12:05:00-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码